Biological Invasions

, Volume 21, Issue 1, pp 27–36 | Cite as

A seaweed increases ecosystem multifunctionality when invading bare mudflats

  • Mads S. Thomsen
  • Aaron P. RamusEmail author
  • Zachary T. Long
  • Brian R. Silliman
Invasion Note


One of the most successful marine invaders worldwide is the seaweed Gracilaria vermiculophylla (Gulbransen et al. 2013; Hu and Juan 2014; Thomsen et al. 2016b). A highly variable abundance of Gracilaria in many different invaded habitats and bioregions has motivated researchers to quantify impacts on a variety of ecological response variables (Gulbransen and McGlathery 2013; Thomsen et al. 2013; Davoult et al. 2017). Ramus et al. ( 2017) therefore used a manipulative field experiment to test for density-dependent effects of Gracilaria on 11 ecosystem functions (see Fig.  1 for a description of the functions). From their experiment and analyses, Ramus et al. concluded that in comparison to bare mudflats, Gracilaria increases multiple ecosystem functions (Figs.  2H and S2E in Ramus et al. 2017).


Biodiversity Ecosystem engineer Ecosystem functioning Experimental designs Facilitation Foundation species Gracilaria vermiculophylla 



We thank two reviewers for comments that improved this manuscript.

Supplementary material

10530_2018_1823_MOESM1_ESM.pdf (5.1 mb)
Supplementary material 1 (PDF 5,191 kb)


  1. Alho P (2003) Land cover characteristics in NE Iceland with special reference to jökulhlaup geomorphology. Geogr Ann Ser Phys Geogr 85:213–227CrossRefGoogle Scholar
  2. Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193CrossRefGoogle Scholar
  3. Bishop MJ, Byers JE (2015) Predation risk predicts use of a novel habitat. Oikos 124:1225–1231CrossRefGoogle Scholar
  4. Byers JE, Gribben PE, Yeager C et al (2012) Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol Invasions 14:2587–2600CrossRefGoogle Scholar
  5. Byrnes JEK, Gamfeldt L, Isbell F et al (2014a) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5:111–124CrossRefGoogle Scholar
  6. Byrnes JEK, Lefcheck JS, Gamfeldt L et al (2014b) Multifunctionality does not imply that all functions are positively correlated. Proc Natl Acad Sci USA 111:E5490CrossRefGoogle Scholar
  7. Cacabelos E, Engelen AH, Mejia A et al (2012) Comparison of the assemblage functioning of estuary systems dominated by the seagrass Nanozostera noltii versus the invasive drift seaweed Gracilaria vermiculophylla. J Sea Res 72:99–105CrossRefGoogle Scholar
  8. Cheng D-L, Niklas KJ (2006) Above-and below-ground biomass relationships across 1534 forested communities. Ann Bot 99:95–102CrossRefGoogle Scholar
  9. Cordero ALH, Seitz RD (2014) Structured habitat provides a refuge from blue crab, Callinectes sapidus, predation for the bay scallop, Argopecten irradians concentricus (Say 1822). J Exp Mar Biol Ecol 460:100–108CrossRefGoogle Scholar
  10. Cordero ALH, Seitz RD, Lipcius RN et al (2012) Habitat affects survival of translocated bay scallops, Argopecten irradians concentricus (Say 1822), in lower Chesapeake Bay. Estuaries Coasts 35:1340–1345CrossRefGoogle Scholar
  11. Critchley A, Farnham W, Morrell S (1986) An account of the attempted control of an introduced marine alga, Sargassum muticum, in southern England. Biol Cons 35:313–332CrossRefGoogle Scholar
  12. Davoult D, Surget G, Stiger-Pouvreau V et al (2017) Multiple effects of a Gracilaria vermiculophylla invasion on estuarine mudflat functioning and diversity. Mar Environ Res 131:227–235CrossRefGoogle Scholar
  13. Falls J (2008) The survival benefit of benthic macroalgae Gracilaria vermiculophylla as an alternative nursery habitat for juvenile blue crabs. Thesis, The College of William and MaryGoogle Scholar
  14. Farnham W, Jones EG (1974) The eradication of the seaweed Sargassum muticum from Britain. Biol Cons 6:57–58CrossRefGoogle Scholar
  15. Gamfeldt L, Hillebrand H, Jonsson P (2005) Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol Lett 8:696–703CrossRefGoogle Scholar
  16. Gonzalez DJ, Smyth AR, Piehler MF et al (2013) Mats of the nonnative macroalga, Gracilaria vermiculophylla, alter net denitrification rates and nutrient fluxes on intertidal mudflats. Limnol Oceanogr 58:2101–2108CrossRefGoogle Scholar
  17. Gonzalez DJ, Gonzalez RA, Froelich BA et al (2014) Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Mar Ecol Prog Ser 505:29–36CrossRefGoogle Scholar
  18. Gray P, Jones EG (1977) The attempted clearance of Sargassum muticum from Britain. Environ Conserv 4:303–308CrossRefGoogle Scholar
  19. Guidone M, Newton C, Thornber CS (2014) Utilization of the invasive alga Gracilaria vermiculophylla (Ohmi) Papenfuss by the native mud snail Ilyanassa obsoleta (Say). J Exp Mar Biol Ecol 452:119–124CrossRefGoogle Scholar
  20. Gulbransen D, McGlathery K (2013) Nitrogen transfers mediated by a perennial, non-native macroalga: a N-15 tracer study. Mar Ecol Prog Ser 482:299–304CrossRefGoogle Scholar
  21. Gulbransen DJ, Thomsen MS, McGlathery KJ (2013) A global perspective on the Gracilaria vermiculophylla invasion: what is currently known and what is still needed. Dissertation, The University of VirginiaGoogle Scholar
  22. Hammann M, Buchholz B, Karez R et al (2013) Direct and indirect effects of Gracilaria vermiculophylla on native Fucus vesiculosus. Aquat Invasions 8:121–132CrossRefGoogle Scholar
  23. Hays JD (1965) Quaternary sediments of the Antarctic Ocean. Prog Oceanogr 4:117–131CrossRefGoogle Scholar
  24. Hensel MJ, Silliman BR (2013) Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc Natl Acad Sci USA 110:20621–20626CrossRefGoogle Scholar
  25. Hewitt CL, Campbell ML, McEnnulty F et al (2005) Efficacy of physical removal of a marine pest: the introduced kelp Undaria pinnatifida in a Tasmanian Marine Reserve. Biol Invasions 7:251–263CrossRefGoogle Scholar
  26. Hoeffle H, Thomsen MS, Holmer M (2011) High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuar Coast Shelf Sci 92:35–46CrossRefGoogle Scholar
  27. Hoeffle H, Wernberg T, Thomsen MS et al (2012) Drift algae, an invasive snail and elevated temperature reduces the ecological performance of a warm-temperate seagrass via additive effects. Mar Ecol Prog Ser 450:67–80CrossRefGoogle Scholar
  28. Holmer M, Wirachwong P, Thomsen MS (2011) Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. Mar Biol 158:297–309CrossRefGoogle Scholar
  29. Hu Z-M, Juan L-B (2014) Adaptation mechanisms and ecological consequences of seaweed invasions: a review case of agarophyte Gracilaria vermiculophylla. Biol Invasions 16:967–976CrossRefGoogle Scholar
  30. Hunt L, Chadderton L, Stuart M et al (2009) Results of an attempt to control and eradicate Undaria pinnatifida in Southland, New Zealand, April 1997–November 2004. Department of Conservation, InvercargillGoogle Scholar
  31. Jiang L (2007) Negative selection effects suppress relationships between bacterial diversity and ecosystem functioning. Ecology 88:1075–1085CrossRefGoogle Scholar
  32. Johnston CA, Lipcius RN (2012) Exotic macroalga Gracilaria vermiculophylla provides superior nursery habitat for native blue crab in Chesapeake Bay. Mar Ecol Prog Ser 467:137–146CrossRefGoogle Scholar
  33. Kellogg TB, Kellogg DE (1987) Recent glacial history and rapid ice stream retreat in the Amundsen Sea. J Geophys Res Solid Earth 92:8859–8864CrossRefGoogle Scholar
  34. Kollars NM, Byers JE, Sotka EE (2016) Invasive décor: an association between a native decorator worm and a non-native seaweed can be mutualistic. Mar Ecol Prog Ser 545:135–145CrossRefGoogle Scholar
  35. Kotta J, Kotta I, Simm M et al (2006) Ecological consequences of biological invasions: three invertebrate case studies in the north-eastern Baltic Sea. Helgol Mar Res 60:106–112CrossRefGoogle Scholar
  36. Laossi K-R, Barot S, Carvalho D et al (2008) Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia 51:397–407CrossRefGoogle Scholar
  37. Lefcheck JS, Byrnes JEK, Isbell F et al (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun 6:6936CrossRefGoogle Scholar
  38. Lindeboom H, Sandee A (1989) Production and consumption of tropical seagrass fields in eastern Indonesia measured with bell jars and microelectrodes. Neth J Sea Res 23:181–190CrossRefGoogle Scholar
  39. Löffler H (1997) The role of ostracods for reconstructing climatic change in Holocene and Late Pleistocene lake environment in Central Europe. J Paleolimnol 18:29–32CrossRefGoogle Scholar
  40. Maestre FT, Reynolds JF (2007) Biomass responses to elevated CO2, soil heterogeneity and diversity: an experimental assessment with grassland assemblages. Oecologia 151:512–520CrossRefGoogle Scholar
  41. Martínez-Lüscher J, Holmer M (2010) Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Mar Environ Res 69:345–349CrossRefGoogle Scholar
  42. Nejrup LB, Staehr PA, Thomsen MS (2013) Temperature-and light-dependent growth and metabolism of the invasive red algae Gracilaria vermiculophylla—a comparison with two native macroalgae. Eur J Phycol 48:295–308CrossRefGoogle Scholar
  43. Nyberg CD, Thomsen MS, Wallentinus I (2009) Flora and fauna associated with the introduced red alga Gracilaria vermiculophylla. Eur J Phycol 44:395–403CrossRefGoogle Scholar
  44. Ramus AP, Silliman BR, Thomsen MS et al (2017) An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proc Natl Acad Sci USA 114:8580–8585CrossRefGoogle Scholar
  45. Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939CrossRefGoogle Scholar
  46. Rowley R (1989) Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-urchin barren ground and a kelp bed: Are populations regulated by settlement or post-settlement processes? Mar Biol 100:485–494CrossRefGoogle Scholar
  47. Rowley R (1990) Newly settled sea urchins in a kelp bed and urchin barren ground: a comparison of growth and mortality. Mar Ecol Prog Ser 62:229–240CrossRefGoogle Scholar
  48. Ruddiman W, Molfino B, Esmay A et al (1980) Evidence bearing on the mechanism of rapid deglaciation. Clim Change 3:65CrossRefGoogle Scholar
  49. Santos LN, Agostinho AA, Alcaraz C et al (2011) Artificial macrophytes as fish habitat in a Mediterranean reservoir subjected to seasonal water level disturbances. Aquat Sci 73:43–52CrossRefGoogle Scholar
  50. Schmidt AL, Scheibling RE (2007) Effects of native and invasive macroalgal canopies on composition and abundance of mobile benthic macrofauna and turf-forming algae. J Exp Mar Biol Ecol 341:110–130CrossRefGoogle Scholar
  51. Sotka EE, Byers JE (2018) Not so fast: promoting invasive species to enhance multifunctionality in a native ecosystem requires strong(er) scrutiny. Biol Invasions. Google Scholar
  52. South PM, Floerl O, Forrest BM et al (2017) A review of three decades of research on the invasive kelp Undaria pinnatifida in Australasia: an assessment of its success, impacts and status as one of the world’s worst invaders. Mar Environ Res 131:243–257CrossRefGoogle Scholar
  53. Thompson TL, Glenn EP (1994) Plaster standards to measure water motion. Limnol Oceanogr 39:1768–1779CrossRefGoogle Scholar
  54. Thomsen MS (2004) Species, thallus size and substrate determine macroalgal break force and break location in a low-energy soft-bottom lagoon. Aquat Bot 80:153–161CrossRefGoogle Scholar
  55. Thomsen MS (2010) Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat Invasions 5:341–346CrossRefGoogle Scholar
  56. Thomsen MS, McGlathery KJ (2005) Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar Coast Shelf Sci 62:63–73CrossRefGoogle Scholar
  57. Thomsen MS, McGlathery KJ (2006) Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. J Exp Mar Biol Ecol 328:22–34CrossRefGoogle Scholar
  58. Thomsen MS, McGlathery KJ (2007) Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biol Invasions 9:499–513CrossRefGoogle Scholar
  59. Thomsen MS, McGlathery KJ, Tyler AC (2006) Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnative Gracilaria vermiculophylla and Coldium fragile. Estuaries Coasts 29:465–473CrossRefGoogle Scholar
  60. Thomsen MS, Silliman BR, McGlathery KJ (2007a) Spatial variation in recruitment of native and invasive sessile species onto oyster reefs in a temperate soft-bottom lagoon. Estuar Coast Shelf Sci 72:89–101CrossRefGoogle Scholar
  61. Thomsen MS, Staehr PA, Nyberg CD et al (2007b) Gracilaria vermiculophylla in northern Europe, with focus on Denmark, and what to expect in the future. Aquat Invasions 2:83–94CrossRefGoogle Scholar
  62. Thomsen MS, McGlathery KJ, Schwarzschild A et al (2009a) Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biol Invasions 11:2303–2316CrossRefGoogle Scholar
  63. Thomsen MS, Wernberg T, Tuya F et al (2009b) Evidence for impacts of non-indigenous macroalgae: a meta-analysis of experimental field studies. J Phycol 45:812–819CrossRefGoogle Scholar
  64. Thomsen MS, Wernberg T, Altieri AH et al (2010) Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol 50:158–175CrossRefGoogle Scholar
  65. Thomsen MS, Wernberg T, Olden JD et al (2011) A framework to study the context-dependent impacts of marine invasions. J Exp Mar Biol Ecol 400:322–327CrossRefGoogle Scholar
  66. Thomsen MS, De Bettignies T, Wernberg T et al (2012a) Harmful algae are not harmful to everyone. Harmful Algae 16:74–80CrossRefGoogle Scholar
  67. Thomsen MS, Wernberg T, Engelen AH et al (2012b) A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS ONE 7:e28595CrossRefGoogle Scholar
  68. Thomsen MS, Staehr PA, Nejrup LB et al (2013) Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat Invasions 8:133–145CrossRefGoogle Scholar
  69. Thomsen MS, Wernberg T, Olden JD et al (2014) Forty years of experiments on invasive species: Are biases limiting our understanding of impacts? Neobiota 22:1–22CrossRefGoogle Scholar
  70. Thomsen MS, Wernberg T, South PM et al (2016a) To include or not to include (the invader in community analyses)? That is the question. Biol Invasions 18:1515–1521CrossRefGoogle Scholar
  71. Thomsen MS, Wernberg T, South PM et al (2016b) Non-native seaweeds drive changes in marine coastal communities around the world. In: Hu Z-M, Fraser C (eds) Seaweed phylogeography. Springer, Dordrecht, pp 147–185CrossRefGoogle Scholar
  72. Valentine JP, Johnson CR (2005) Persistence of sea urchin (Heliocidaris erythrogramma) barrens on the east coast of Tasmania: inhibition of macroalgal recovery in the absence of high densities of sea urchins. Bot Mar 48:106–115CrossRefGoogle Scholar
  73. Whyte R (1971) Geology and palaeogeography of Chibuluma West Orebody, Zambian copperbelt; part I, geology of Chibuluma West. Econ Geol 66:400–409CrossRefGoogle Scholar
  74. Wotton DM, O’Brien C, Stuart MD et al (2004) Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Mar Pollut Bull 49:844–849CrossRefGoogle Scholar
  75. Wright JT, Byers JE, DeVore JL et al (2014) Engineering or food? Mechanisms of facilitation by a habitat forming invasive seaweed. Ecology 95:2699–2706CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mads S. Thomsen
    • 1
    • 2
  • Aaron P. Ramus
    • 3
    Email author
  • Zachary T. Long
    • 3
  • Brian R. Silliman
    • 4
  1. 1.Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.Oceans Institute and School of Plant BiologyUniversity of Western AustraliaPerthAustralia
  3. 3.Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonUSA
  4. 4.Division of Marine Science and Conservation, Nicholas School of the EnvironmentDuke UniversityBeaufortUSA

Personalised recommendations