Advertisement

Biological Invasions

, Volume 21, Issue 1, pp 137–149 | Cite as

The potential of common ragweed for further spread: invasibility of different habitats and the role of disturbances and propagule pressure

  • György Kröel-DulayEmail author
  • Anikó Csecserits
  • Katalin Szitár
  • Edit Molnár
  • Rebeka Szabó
  • Gábor Ónodi
  • Zoltán Botta-Dukát
Original Paper

Abstract

The infilling of existing suitable habitats within a landscape after establishment is of critical importance for the final outcome of a plant invasion, yet it is an often overlooked process. Common ragweed, Ambrosia artemisiifolia, is an invasive annual species in Europe causing serious problems due to its highly allergenic pollen and as an agricultural weed. Recent studies have modelled the broad-scale distribution of the species and assessed future invasion risk, but for predicting the expected outcome of ragweed invasion we also need a mechanistic understanding of its local invasion success. We conducted a field experiment to investigate the invasibility of eight common non-arable habitat types and the role of soil disturbance in central Hungary, in the hot spot of ragweed invasion in Europe. Seed addition alone resulted in negligible amount of ragweed biomass, except for sites where disturbance was part of the present management. Soil disturbance alone resulted in ragweed at those few sites where ragweed seeds were present in the seed bank, related to farming in recent decades. When disturbance and seed addition were combined, ragweed emerged in all habitat types and reached high biomass in all habitat types except for closed forests. As our experiment showed that most habitat types have high invasibility when disturbed, we conclude that ragweed has a high potential for further spread, even in this heavily infested region. Management should focus on preventing seed dispersal and eradicating establishing populations where ragweed is still absent, while reducing soil disturbance may be needed to avoid ragweed emergence in infested sites. This latter may require a reconsideration of land-use practices in infested regions.

Keywords

Ambrosia artemisiifolia Grassland Old-field Seed addition Seed bank Tree plantation 

Notes

Acknowledgements

We thank Bernadett Kolonics, Richárdné Ribai and Sándorné Vadkerti for their help in lab work. This study was funded by the Ministry of Agriculture and Rural Development (Z. B-D.), by the MTA Postdoctoral Research Programme (PD-009/2017; A. C.), and by the MTA János Bolyai Research Scholarship (BO/00276/15/8; G. K-D.).

Author’s contributions

G. K-D., A. C. and Z. B-D. conceived the research. All authors were involved in data collection in the field. Z. B-D. analysed the data. G. K-D. led the writing of the manuscript, with major input from A. C., Z. B-D., and K S. All authors contributed substantially to the draft, and gave final approval for publication.

Supplementary material

10530_2018_1811_MOESM1_ESM.pdf (294 kb)
Supplementary material 1 (PDF 294 kb)
10530_2018_1811_MOESM2_ESM.pdf (177 kb)
Supplementary material 2 (PDF 177 kb)
10530_2018_1811_MOESM3_ESM.pdf (446 kb)
Supplementary material 3 (PDF 445 kb)
10530_2018_1811_MOESM4_ESM.pdf (181 kb)
Supplementary material 4 (PDF 180 kb)

References

  1. Bazzaz FA (1968) Succession on abandoned fields in the Shawnee Hills, Southern Illinois. Ecology 49:924–936CrossRefGoogle Scholar
  2. Bazzaz FA (1973) Photsynthesis of Ambrosia artemisiifolia L. plants grown in greenhouse and in the field. Am Midl Nat 90:186–190CrossRefGoogle Scholar
  3. Beckstead J, Augspurger C (2004) An experimental test of resistance to cheatgrass invasion: limiting resources at different life stages. Biol Invasions 6:417–432CrossRefGoogle Scholar
  4. Béres I, Hunyadi K (1991) Az Ambrosia elatior elterjedése Magyarországon. Növényvédelem 27:405–410Google Scholar
  5. Berg JA, Meyer GA, Young EB (2016) Propagule pressure and environmental conditions interact to determine establishment success of an invasive plant species, glossy buckthorn (Frangula alnus), across five different wetland habitat type. Biol Invasions 18:1363–1373CrossRefGoogle Scholar
  6. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JR, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefGoogle Scholar
  7. Burbach GJ, Heinzerling LM, Röhnelt C, Bergmann KC, Behrendt H, Zuberbier T (2009) Ragweed sensitization in Europe–GA2LEN study suggests increasing prevalence. Allergy 64:664–665CrossRefGoogle Scholar
  8. Burke MJW, Grime JP (1996) An experimental study of plant community invasibility. Ecology 77:776–790CrossRefGoogle Scholar
  9. Chauvel B, Dessaint F, Legrand C, Bretagnolle F (2006) The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. J Biogeogr 33:665–673CrossRefGoogle Scholar
  10. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037CrossRefGoogle Scholar
  11. Csecserits A, Kröel-Dulay G, Molnár E, Rédei T, Szabó R, Szitár K, Botta-Dukát Z (2009) A parlagfű (Ambrosia artemisifolia L.) előfordulása és tömegessége változatos tájhasználatú mozaikos tájban. Gyomnövények gyomirt 10:44–51Google Scholar
  12. Csecserits A, Botta-Dukát Z, Kröel-Dulay G, Lhotsky B, Ónodi G, Rédei T, Szitár K, Halassy M (2016) Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agric Ecosyst Environ 226:88–98CrossRefGoogle Scholar
  13. Csontos P, Angyal Z, Chmura D, Nagy J, Halbritter A, Tamás J (2015) (New stand of invasive neophyte Ambrosia artemisiifolia L. and its potential reproduction. Pol J Ecol 63:453–459CrossRefGoogle Scholar
  14. Dahl A, Strandhede SO, Wihl JA (1999) Ragweed—an allergy risk in Sweden? Aerobiologia 15:293–297CrossRefGoogle Scholar
  15. Bullock J, Chapman D, Schaffer S, Roy D, Girardello M, Haynes T, Beal S, Wheeler B, Dickie, I. et al. (2012) Assessing and controlling the spread and the effects of common ragweed in Europe (ENV.B2/ETU/2010/0037). European Commission, Final ReportGoogle Scholar
  16. Eschtruth AK, Battles JJ (2009) Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79:265–280CrossRefGoogle Scholar
  17. Essl F, Dullinger S, Kleinbauer I (2009) Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81:119–133Google Scholar
  18. Essl F, Biró K, Brandes D, Broennimann O, Bullock JM, Chapman DS, Chauvel B, Dullinger S, Fumanal B et al (2015) Biological flora of the British Isles: Ambrosia artemisiifolia. J Ecol 103:1069–1098CrossRefGoogle Scholar
  19. Foster DR, Swanson F, Aber J, Burke I, Brokaw B, Tilman D, Knapp A (2003) The importance of land-use legacies to ecology and conservation. Bioscience 53:77–88CrossRefGoogle Scholar
  20. Fumanal B, Chauvel B, Bretagnolle F (2007) Estimation of pollen and seed production of common ragweed in France. Ann Agric Environ Med 14:233–236Google Scholar
  21. Fumanal B, Gaudot I, Bretagnolle F (2008a) Seed-bank dynamics in the invasive plant, Ambrosia artemisiifolia L. Seed Sci Res 18:101–114CrossRefGoogle Scholar
  22. Fumanal B, Girod C, Fried G, Bretagnolle F, Chauvel B (2008b) Can the large ecological amplitude of Ambrosia artemisiifolia explain its invasive success in France? Weed Res 48:349–359CrossRefGoogle Scholar
  23. Galzina N, Barić K, Šćepanović M, Goršić M, Ostojić Z (2010) Distribution of invasive weed Ambrosia artemisiifolia L. in Croatia. Agric Conspec Sci 75:75–81Google Scholar
  24. Gentili R, Montagnani R, Gilardelli F, Guarino MF, Citterio S (2017) Let native species take their course: Ambrosia artemisiifolia replacement during natural and artificial succession. Acta Oecol 82:32–40CrossRefGoogle Scholar
  25. Gioria M, Pyšek P (2017) Early bird catches the worm: germination as a critical step in plant invasion. Biol Invasions 19:1055–1080CrossRefGoogle Scholar
  26. González-Moreno P, Pino J, Cózar A, García-de-Lomas Vilà M (2017) The effects of landscape history and time-lags on plant invasion in Mediterranean coastal habitats. Biol Invasions 19:549–561CrossRefGoogle Scholar
  27. Hamaoui-Laguel L, Vautard R, Liu L, Solmon F, Viovy N, Khvorostyanov D, Essl F, Chuine I, Colette A et al (2015) Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Change 5:766–771CrossRefGoogle Scholar
  28. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for consevations. Conserv Biol 6:324–337CrossRefGoogle Scholar
  29. Hobbs RJ, Mooney HA (1985) Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. Oecologia 67:342–351CrossRefGoogle Scholar
  30. Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. Wiley, New York, p 244Google Scholar
  31. Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2008) Implementing a class of permutation tests: the coin package. J Stat Softw 28:1–23. URL http://www.jstatsoft.org/v28/i08/
  32. Hothorn T, Bretz F, Westfall P (2008b) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefGoogle Scholar
  33. Katz DS, Barrie BTC, Carey TS (2014) Urban ragweed populations in vacant lots: an ecological perspective on management. Urban For Urban Green 13:756–760CrossRefGoogle Scholar
  34. Kazinczi G, Béres I, Varga P, Kovács I, Torma M (2007) A parlagfű (Ambrosia artemisiifolia L.) és a kultúrnövények közötti versengés szabadföldi additív kísérletekben. Magy Gyomkutatás és Technol 8:41–47Google Scholar
  35. Kovács-Láng E, Kröel-Dulay G, Kertész M, Fekete G, Mika J, Dobi-Wantuch I, Rédei T, Rajkai K, Hahn I, Bartha S (2000) Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30:385–408CrossRefGoogle Scholar
  36. Kröel-Dulay G, Ransijn J, Schmidt IK, Beier C, De Angelis P, de Dato G, Dukes JS, Emmett B, Estiarte M et al (2015) Increased sensitivity to climate change in disturbed ecosystems. Nat Commun 6:6682CrossRefGoogle Scholar
  37. Lavoie C, Jodoin Y, Goursaud de Merlis A (2007) How did common ragweed (Ambrosia artemisiifolia L.) spread in Quebec? A historical analysis using herbarium records. J Biogeogr 34:1751–1761CrossRefGoogle Scholar
  38. Leiblen-Wild MC, Steinkamp J, Hickler T, Tackenberg O (2016) Modelling the potential distribution, net primary production and phenology of common ragweed with a physiological model. J Biogeogr 43:544–554CrossRefGoogle Scholar
  39. LI -COR Inc (1992) LAI-2000 plant canopy analyzer instruction manual. LI-COR Inc., LincolnGoogle Scholar
  40. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibilty. Ecology 80:1522–1536CrossRefGoogle Scholar
  41. Mack RN (1981) Invasion in Bromus tectorumn L. into western North America: an ecological chronicle. Agro-Ecosystems 7:145–165CrossRefGoogle Scholar
  42. McGlone CM, Sieg CH, Kolb TE (2011) Invasion resistance and persistence: established plants win, even with disturbance and high propagule pressure. Biol Invasions 13:291–304CrossRefGoogle Scholar
  43. Novák R, Dancza I, Szentey L, Karamán J (2009) Arable weeds of Hungary. The 5th national weed survey (2007–2008). Ministry of Agriculture and Rural Development, BudapestGoogle Scholar
  44. Parker IM (2001) Safe site and seed limitation in Cytisus scoparius (Scotch broom): invasibility, disturbance, and the role of cryptogams in a glacial outwash prairie. Biol Invasions 3:323–332CrossRefGoogle Scholar
  45. Pickett AT, White PS (1985) The ecology of natural disturbances and patch dynamics. Academic Press, New YorkGoogle Scholar
  46. Pinke G, Karácsony P, Czúcz B, Botta-Dukát Z (2011) Environmental and land-use variables determining the abundance of Ambrosia artemisiifolia in arable fields in Hungary. Preslia 83:219–235Google Scholar
  47. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/, Version 3.3.2
  48. Rédei T, Csecserits A, Barabás S, Halassy M, Kröel-Dulay G, Lellei-Kovács E, Ónodi G, Pándi I, Somay L, Szabó R, Szitár K, Török K (2011) Tájhasználat és biodiverzitás kapcsolatának regionális léptékű vizsgálata a Kiskunságban: a Kiskun LTER mintaterület-hálózat bemutatása. In: Verő G (ed.) Természetvédelem és kutatás a Duna–Tisza közi homokhátságon. Rosalia 6, Duna-Ipoly Nemzeti Park Igazgatóság, Budapest, pp. 423–445Google Scholar
  49. Rédei T, Szitár K, Czúcz B, Barabás S, Lellei-Kovács E, Pándi I, Somay L, Csecserits A (2014) Weak evidence of long-term extinction debt in Pannonian dry sand grasslands. Agr Ecosyst Environ 182:137–143CrossRefGoogle Scholar
  50. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  51. Richter R, Berger UE, Dullinger S, Essl F, Leitner M, Smith M, Vogl G (2013) Spread of invasive ragweed: climate change, management and how to reduce allergy costs. J Appl Ecol 50:1422–1430CrossRefGoogle Scholar
  52. Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  53. Skalova H, Guo W-Y, Wild J, Pyšek P (2017) Ambrosia artemisiifoliain the Czech Republic: history of invasion, current distribution and prediction of future spread. Preslia 89:1–16CrossRefGoogle Scholar
  54. Skjøth CA, Smith M, Šikoparija B, Stach A, Myszkowska D, Kasprzyk I, Radišić P, Stjepanović B, Hrga I et al (2010) A method for producing airborne pollen source inventories: an example of Ambrosia (ragweed) on the Pannonian Plain. Agric For Meteorol 150:1203–1210CrossRefGoogle Scholar
  55. Smith M, Cecchi L, Skjøth CA, Karrer G, Šikoparija B (2013) Common ragweed: a threat to environmental health in Europe. Environ Int 61:115–126CrossRefGoogle Scholar
  56. Storkey J, Stratonovitch P, Chapman DS, Vidotto F, Semenov MA (2014) A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS ONE 9:e88156CrossRefGoogle Scholar
  57. Tanentzap AJ, Lee WG, Monks A, Ladley K, Johnson PN, Rogers GM, Comrie JM, Clarke DA, Hayman E (2014) Identifying pathways for managing multiple disturbances to limit plant invasions. J Appl Ecol 51:1015–1023CrossRefGoogle Scholar
  58. Vilà M, Siamantziouras ASD, Brundu G, Camarda I, Lambdon P, Médail F, Moragues E, Suehs CM, Traveset A, Troumbis AZ, Hulme PE (2008) Widespread resistance of Mediterranean island ecosystems to the establishment of three alien species. Divers Distrib 14:839–851CrossRefGoogle Scholar
  59. Vitalos M, Karrer G (2009) Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. Neobiota 8:53–60Google Scholar
  60. Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218CrossRefGoogle Scholar
  61. Wallace JM, Prather TS (2016) Invasive spread dynamics of Anthriscus caucalisat an ecosystem scale: propagule pressure, grazing disturbance and plant community susceptibility in canyon grasslands. Biol Invasions 8:145–157CrossRefGoogle Scholar
  62. With K (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.MTA Centre for Ecological ResearchVácrátótHungary

Personalised recommendations