Biological Invasions

, Volume 20, Issue 12, pp 3575–3589 | Cite as

Chronicle of an impact foretold: the fate and effect of the introduced Formica paralugubris ant

  • Filippo FrizziEmail author
  • Alberto Masoni
  • Giovanni Quilghini
  • Paola Ciampelli
  • Giacomo Santini
Original Paper


Starting in 1958, red wood ants (Formica rufa group) from the Alps were transplanted to several Apennine forests along the Italian peninsula to be employed as biological control agents for tree insect pests. In the Campigna Biogenetic Nature Reserve, central Italy, hundreds of mounds of the dominant Formica paralugubris were repeatedly introduced, creating several populations that still survive today. In this study, we analyzed the temporal dynamics and the ecological impact of five of these populations. Their present state was assessed by censusing the total number of nest mounds and their volumes, while past changes were reconstructed from literature records. We also evaluated the impact of this species on autochthonous arthropod communities by comparing impacted and non-impacted areas and performing predation experiments. The density of nests and their volume remained stable or declined for a few years after transplant, and then they began to grow steadily. Local arthropods were severely affected, since almost all collected groups were significantly less represented in impacted than in non-impacted sites. Additionally, experiments with live bait demonstrated that potential prey have a significantly greater probability of being consumed in the areas occupied by F. paralugubris. These results prompt a thorough assessment of the fate of the introduced red wood ant populations, since their role as biological control agents has to be traded against the ecological impact on native arthropod communities. This is particularly relevant for highly biodiverse areas, such as the Campigna forest, that are home of several invertebrate species with conservation interest.


Red wood ants imported species Ecological impact Biological control 



This study was partly funded by the Reparto Carabinieri Biodiversità di Pratovecchio. We are very grateful to Car. Sc. Barbara Rossi for the constant support during all the phases of the project. We also thank Fabrizio Rigato (Museo Civico di Storia Naturale di Milano) for help in identifying ant species. We finally thank all the graduate students for helping us through their essential efforts: Jessica Palmieri, Margherita Santedicola, Martina Servini, and Nicola Simoncini.

Supplementary material

10530_2018_1797_MOESM1_ESM.pdf (61 kb)
Supplementary material 1 (PDF 61 kb)


  1. Aho T, Kuitunen M, Suhonen J, Jäntti A, Hakkari T (1999) Reproductive success of Eurasian treecreepers, Certhia familiaris, lower in territories with wood ants. Ecology 80:998–1007. CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. CrossRefGoogle Scholar
  3. Bland JM, Altman DG (1998) Survival probabilities (the Kaplan–Meier method). The BMJ 317:1572–1580. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bosso L, Rebelo H, Garonna AP, Russo D (2013) Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J Nat Conserv 21:72–80. CrossRefGoogle Scholar
  5. Bottacci A (2009) La Riserva Naturale Integrale di Sasso Fratino: 1959-2009. 50 anni di conservazione della biodiversità. Corpo Forestale dello Stato/UTB Pratovecchio, ArezzoGoogle Scholar
  6. Breymeyer A (1966) Relations between wandering spiders and other epigeic predatory arthropoda. Ekologia Polska A 14:27–71Google Scholar
  7. Brüning A (1991) The effect of a single colony of the red wood ant, Formica polyctena, on the spider fauna (Araneae) of a beech forest floor. Oecologia 86:478–483. CrossRefPubMedGoogle Scholar
  8. Buhl J, Hicks K, Miller ER, Persey S, Alinvi O, Sumpter DJ (2009) Shape and efficiency of wood ant foraging networks. Behav Ecol Sociobiol 63:451–460. CrossRefGoogle Scholar
  9. Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. CrossRefGoogle Scholar
  10. Chapuisat M, Goudet J, Keller L (1997) Microsatellites reveal high population viscosity and limited dispersal in the ant Formica paralugubris. Evolution 51:475–482. CrossRefPubMedGoogle Scholar
  11. Chen YH, Robinson EJ (2014) The relationship between canopy cover and colony size of the wood ant Formica lugubris—Implications for the thermal effects on a keystone ant species. PLoS One 9:e116113. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cherix D (1980) Note preliminaire sur la structure, la phenologie et le regime alimentaire d’une super-colonie de Formica lugubris Zett. Insect Soc 27:226–236. CrossRefGoogle Scholar
  13. Cherix D, Bourne JD (1980) A field study on a super-colony of the red wood ant Formica lugubris Zett. in relation to other predatory arthropodes (spiders, harvestmen and ants). Rev Suisse Zool 87:955–973. CrossRefGoogle Scholar
  14. Cherix D, Higashi S (1979) Distribution verticale des fourmis dans le Jura vaudois et recensement préliminaire des bourdons (Hymenoptera, Formicidae et Apidae). Bulletin de la Société vaudoise des Sciences naturelles 74:315–324Google Scholar
  15. Cianferoni F, Fabiano F, Mazza G, Rocchi S, Terzani F, Zinetti F (2009) Gli Invertebrati della Riserva Naturale Integrale di Sasso Fratino. In: Bottacci A (ed) La Riserva Naturale Integrale di Sasso Fratino: 1959-2009. 50 anni di conservazione della biodiversità. Corpo Forestale dello Stato/UTB Pratovecchio, Arezzo, pp 227–252Google Scholar
  16. Clarke KR, Warwick RM (2001) An approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, PlymouthGoogle Scholar
  17. Cocu N, Harrington R, Rounsevell MDA, Worner SP, Hulle M, Examine Project Participants (2005) Geographical location, climate and land use influences on the phenology and numbers of the aphid, Myzus persicae, in Europe. J Biogeogr 32:615–632. CrossRefGoogle Scholar
  18. Domisch T, Finér L, Neuvonen S, Niemelä P et al (2009) Foraging activity and dietary spectrum of wood ants (Formica rufa group) and their role in nutrient fluxes in boreal forests. Ecol Entomol 34:369–377. CrossRefGoogle Scholar
  19. Domisch T, Risch AC, Robinson EJH (2016) Wood ant foraging and mutualism with aphids. In: Stockan JA, Robinson EJH (eds) Wood ant ecology and conservation. Cambridge University Press, Cambridge, pp 145–176Google Scholar
  20. Ellis S, Robinson EJH (2014) Polydomy in red wood ants. Insect Soc 61:111–122. CrossRefGoogle Scholar
  21. Feranec J, Soukup T, Hazeu G, Jaffrain G (2016) European landscape dynamics: CORINE land cover data. CRC Press, Boca RatonCrossRefGoogle Scholar
  22. Finnegan RJ (1975) Introduction of a predacious red wood ant, Formica lugubris (Hymenoptera: Formicidae), from Italy to eastern Canada. Can Entomol 107:1271–1274. CrossRefGoogle Scholar
  23. Follett P, Duan JJ (2012) Nontarget effects of biological control. Springer, BerlinGoogle Scholar
  24. Fowler SV, MacGarvin M (1985) The impact of hairy wood ants, Formica lugubris, on the guild structure of herbivorous insects on birch, Betula pubescens. J Anim Ecol 54:847–855. CrossRefGoogle Scholar
  25. Goropashnaya AV, Fedorov VB, Seifert B, Pamilo P (2004) Limited phylogeographical structure across Eurasia in two red wood ant species Formica pratensis and F. lugubris (Hymenoptera, Formicidae). Mol Ecol 13:1849–1858. CrossRefPubMedGoogle Scholar
  26. Gosswald K (1951) Die rote waldameise im dienste der waldhygiene: forstwirtschaftliche bedeutung, nutzung, lebensweise, zucht, wermehrung und schutt. Metta Kinau Verlag, LüneburgGoogle Scholar
  27. Greenslade PJ (1973) Sampling ants with pitfall traps: digging-in effects. Insect Soc 20:343–353. CrossRefGoogle Scholar
  28. Gris G, Cherix D (1977) Les grandes colonies de fourmis des bois du Jura (groupe Formica rufa). Bull Soc Entomol Suisse 50:249–250Google Scholar
  29. Groppali R, Crudele G (2005) Le formiche del gruppo Formica rufa trapiantate nel Parco Nazionale delle Foreste Casentinesi, Monte Falterona e Campigna. Quad Stud Nat Romagna 20:63–73Google Scholar
  30. Groppali R, Omati M (1993) Le popolazioni di Formica lugubris Zett. (Hymenoptera:Formicidae) della Riserva Naturale Biogenetica “Giovetto delle Paline” (Bergamo–Brescia): indagine in aree campione. Riv Mus Civ Sc Nat 16:33–40Google Scholar
  31. Haemig PD (1992) Competition between ants and birds in a Swedish forest. Oikos 3:479–483. CrossRefGoogle Scholar
  32. Haemig PD (1996) Interference from ants alters foraging ecology of great tits. Behav Ecol Sociobiol 38:25–29. CrossRefGoogle Scholar
  33. Halaj J, Ross DW, Moldenke AR (1997) Negative effects of ant foraging on spiders in Douglas-fir canopies. Oecologia 109:313–322. CrossRefPubMedGoogle Scholar
  34. Hawes C, Stewart A, Evans H (2002) The impact of wood ants (Formica rufa) on the distribution and abundance of ground beetles (Coleoptera: Carabidae) in a Scots pine plantation. Oecologia 131:612–619. CrossRefPubMedGoogle Scholar
  35. Hawes C, Evans HF, Stewart AJ (2013) Interference competition, not predation, explains the negative association between wood ants (Formica rufa) and abundance of ground beetles (Coleoptera: Carabidae). Ecol Entomol 38:315–322. CrossRefGoogle Scholar
  36. Hazell SP, Groutides C, Neve BP, Blackburn TM, Bale JS (2010) A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic. J Insect Physiol 56:115–122. CrossRefPubMedGoogle Scholar
  37. Hill M, Holm K, Vel T, Shah NJ, Matyot P (2003) Impact of the introduced yellow crazy ant Anoplolepis gracilipes on Bird Island, Seychelles. Biodivers Conserv 12:1969–1984. CrossRefGoogle Scholar
  38. Holzer B, Keller L, Chapuisat M (2009) Genetic clusters and sex-biased gene flow in a unicolonial Formica ant. BMC Evol Biol 9:69. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, OxfordCrossRefGoogle Scholar
  40. Johansson T, Gibb H (2012) Forestry alters foraging efficiency and crop contents of aphid-tending red wood ants, Formica aquilonia. PloS One 7:e32817. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Johansson T, Gibb H (2016) Interspecific competition and coexistence between wood ants. In: Stockan JA, Robinson EJH (eds) Wood ant ecology and conservation. Cambridge University Press, Cambridge, pp 123–143Google Scholar
  42. Karaman MG (2009) An introduction to the ant fauna of Macedonia (Balkan Peninsula), a check list (Hymenoptera, Formicidae). Nat Montenegr 8:151–162Google Scholar
  43. Kilpeläinen J, Finér L, Neuvonen S, Niemelä P, Domisch T, Risch AC et al (2009) Does the mutualism between wood ants (Formica rufa group) and Cinara aphids affect Norway spruce growth? Forest Ecol Manag 257:238–243. CrossRefGoogle Scholar
  44. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), NairobiGoogle Scholar
  45. Laakso J (1999) Short-term effects of wood ants (Formica aquilonia Yarr.) on soil animal community structure. Soil Biol Biochem 31:337–343. CrossRefGoogle Scholar
  46. Laakso J, Setälä H (2000) Impacts of wood ants (Formica aquilonia Yarr.) on the invertebrate food web of the boreal forest floor. Ann Zool Fenn 2:93–100Google Scholar
  47. Laine KJ, Niemelä P (1980) The influence of ants on the survival of mountain birches during an Oporinia autumnata (Lep., Geometridae) outbreak. Oecologia 47:39–42. CrossRefPubMedGoogle Scholar
  48. Lenoir L (2003) Response of the foraging behaviour of red wood ants (Formica rufa group) to exclusion from trees. Agr Forest Entomol 5:183–189. CrossRefGoogle Scholar
  49. Lenoir L, Bengtsson J, Persson T (2003) Effects of Formica ants on soil fauna-results from a short-term exclusion and a long-term natural experiment. Oecologia 134:423–430. CrossRefPubMedGoogle Scholar
  50. Louda SM, Pemberton RW, Johnson MT, Follett P (2003) Nontarget effects—the Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396. CrossRefPubMedGoogle Scholar
  51. Masoni A, Frizzi F, Natali C, Bernasconi C, Ciofi C, Santini G (2018) Molecular identification of imported red wood ant populations in the Foreste Casentinesi National Park (Italy). Conserv Genet Resour. CrossRefGoogle Scholar
  52. O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’on an oceanic island. Ecol Lett 6:812–817. CrossRefGoogle Scholar
  53. Oksanen J, Guillaume Blanchet F, Friendly M et al. (2017) vegan: Community Ecology Package. Accessed 20 Jan 2018
  54. Pavan M (1959) Attività italiana per la lotta biologica con formiche del gruppo Formica rufa contro gli insetti dannosi alle foreste. Collana Verde Ministero dell’Agricoltura e Foreste 4:1–78Google Scholar
  55. Pontin AJ (1982) Competition and coexistence of species. Pitman, Boston-London-MelbourneGoogle Scholar
  56. Poore D, Gryn-Ambroes P (1980) Nature conservation in Northern and Western Europe. UNEP/IUCN, Nairobi/GlandGoogle Scholar
  57. Powell W, Parry WH (1976) Effects of temperature on overwintering populations of the green spruce aphid Elatobium abietinum. Ann Appl Biol 82:209–219. CrossRefGoogle Scholar
  58. Punttila P, Haila Y, Tukia H (1996) Ant communities in taiga clearcuts: habitat effects and species interactions. Ecography 19:16–28. CrossRefGoogle Scholar
  59. Punttila P, Niemelä P, Karhu K (2004) The impact of wood ants (Hymenoptera: Formicidae) on the structure of invertebrate community on mountain birch (Betula pubescens ssp. czerepanovii). Ann Zool Fenn 2:429–446Google Scholar
  60. Reznikova Z, Dorosheva H (2004) Impacts of red wood ants Formica polyctena on the spatial distribution and behavioural patterns of ground beetles (Carabidae). Pedobiologia 48:15–21. CrossRefGoogle Scholar
  61. Risch AC, Ellis S, Wiswell H (2016) Where and why? Wood ant population ecology. In: Stockan JA, Robinson EJH (eds) Wood ant ecology and conservation. Cambridge University Press, Cambridge, pp 81–105Google Scholar
  62. Robinson E, Stockan J, Iason G (2016) Wood ants and their interaction with other organisms. In: Stockan JA, Robinson EJH (eds) Wood ant ecology and conservation. Cambridge University Press, Cambridge, pp 177–206Google Scholar
  63. Rodenhouse NL, Bohlen PJ, Barrett GW (1997) Effects of woodland shape on the spatial distribution and density of 17-year periodical cicadas (Homoptera: Cicadidae). Am Midl Nat 1:124–135. CrossRefGoogle Scholar
  64. Ronchetti G (1975) Lotta biologica e difesa integrata contro gli insetti nocivi alle piante. Collana Verde Ministero dell’Agricoltura e Foreste 37:1–67Google Scholar
  65. Ronchetti G, Groppali R (1995) Quarantacinque anni di protezione forestale con Formica lugubris Zett. (Hymenoptera Formicidae). L’esperienza di Monte d’Alpe (Appennino Ligure in provincia di Pavia). Istituto di Entomologia dell’Università di Pavia, PaviaGoogle Scholar
  66. Ronchetti G, Mazzoldi P, Groppali R (1986) Venticinque anni di osservazioni sui trapianti di Formica lugubris zett. dalla Alpi alle foreste demaniali casentinesi, Italia centrale: Hymen. Formicidae. Università di Pavia, PaviaGoogle Scholar
  67. Rosengren R (1986) Competition and coexistence in an insular ant community—a manipulation experiment (Hymenoptera: Formicidae). Ann Zool Fenn 3:297–302Google Scholar
  68. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. CrossRefGoogle Scholar
  69. Savolainen R, Vepsäläinen K (1988) A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 2:135–155. CrossRefGoogle Scholar
  70. Savolainen R, Vepsäläinen K (1989) Niche differentiation of ant species within territories of the wood ant Formica polyctena. Oikos 1:3–16. CrossRefGoogle Scholar
  71. Seifert B (1996) Formica paralugubris nov. spec.-a sympatric sibling species of Formica lugubris from the western Alps (Insecta: Hymenoptera: Formicoidea: Formicidae). Reichenbachia 31:193–201Google Scholar
  72. Seifert B (2016) The supercolonial European wood ant Formica paralugubris Seifert, 1996 (Hymenoptera: Formicidae) introduced to Canada and its predicted role in Nearctic forests. Myrmecol News 22:11–20Google Scholar
  73. Skinner GJ (1980) The feeding habits of the wood-ant, Formica rufa (Hymenoptera: Formicidae), in limestone woodland in north-west England. J Anim Ecol 2:417–433. CrossRefGoogle Scholar
  74. Skinner GJ, Whittaker JB (1981) An experimental investigation of inter-relationships between the wood-ant (Formica rufa) and some tree-canopy herbivores. J Anim Ecol 1:313–326. CrossRefGoogle Scholar
  75. Sorvari J (2016) Wood ants: threats, conservation and management. In: Stockan JA, Robinson EJH (eds) Wood ant ecology and conservation. Cambridge University Press, Cambridge, pp 264–299Google Scholar
  76. Sorvari J, Hakkarainen H (2005) Deforestation reduces nest mound size and decreases the production of sexual offspring in the wood ant Formica aquilonia. In Ann Zool Fenn 42:259–267Google Scholar
  77. Sorvari J, Hakkarainen H (2007a) The role of food and colony size in sexual offspring production in a social insect: an experiment. Ecol Entomol 32:11–14. CrossRefGoogle Scholar
  78. Sorvari J, Hakkarainen H (2007b) Wood ants are wood ants: deforestation causes population declines in the polydomous wood ant Formica aquilonia. Ecol Entomol 32:707–711. CrossRefGoogle Scholar
  79. Sorvari J, Hakkarainen H (2009) Forest clear-cutting causes small workers in the polydomous wood ant Formica aquilonia. Ann Zool Fenn 46:431–438CrossRefGoogle Scholar
  80. Sorvari J, Haatanen MK, Vesterlund SR (2011) Combined effects of overwintering temperature and habitat degradation on the survival of boreal wood ant. J Insect Conserv 15:727–731. CrossRefGoogle Scholar
  81. Sorvari J, Huhta E, Hakkarainen H (2014) Survival of transplanted nests of the red wood ant Formica aquilonia (Hymenoptera: Formicidae): the effects of intraspecific competition and forest clear-cutting. Insect Sci 21:486–492. CrossRefPubMedGoogle Scholar
  82. Stockan JA, Robinson EJH, Trager JC, Yao I, Seifert B (2016) Introducing wood ants: evolution, phylogeny, identification and distribution. In: Stockan JA, Robinson EJH (eds) Wood ant ecology and conservation. Cambridge University Press, Cambridge, pp 1–36Google Scholar
  83. Storer AJ, Jurgensen MF, Risch AC, Delisle J, Hyslop MD (2008) The fate of an intentional introduction of Formica lugubris to North America from Europe. J Appl Entomol 132:276–280. CrossRefGoogle Scholar
  84. Therneau T (2015) A Package for Survival Analysis in S. Accessed 20 January 2017
  85. Vepsalainen K, Savolainen R (1990) The effect of interference by Formicine ants on the foraging of Myrmica. J Anim Ecol 2:643–654. CrossRefGoogle Scholar
  86. Walters KFA, Dewar AM (1986) Overwintering strategy and the timing of the spring migration of the cereal aphids Sitobion avenae and Sitobion fragariae. J Appl Ecol 3:905–915. CrossRefGoogle Scholar
  87. Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735. CrossRefGoogle Scholar
  88. Wardle DA, Hyodo F, Bardgett RD, Yeates GW, Nilsson MC (2011) Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92:645–656. CrossRefPubMedGoogle Scholar
  89. Whittaker JB, Warrington S (1985) An experimental field study of different levels of insect herbivory induced by Formica rufa predation on sycamore (Acer pseudoplatanus) III. Effects on tree growth. J Appl Ecol 3:797–811. CrossRefGoogle Scholar
  90. Worton BJ (1987) A review of models of home range for animal movement. Ecol Model 38:277–298. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of FlorenceSesto Fiorentino, FlorenceItaly
  2. 2.Reparto Carabinieri Biodiversità di FollonicaFollonicaItaly
  3. 3.Reparto Carabinieri Biodiversità di PratovecchioPratovecchio StiaItaly

Personalised recommendations