Advertisement

Biological Invasions

, Volume 20, Issue 12, pp 3461–3473 | Cite as

Running off the road: roadside non-native plants invading mountain vegetation

  • Keith L. McDougall
  • Jonas Lembrechts
  • Lisa J. Rew
  • Sylvia Haider
  • Lohengrin A. Cavieres
  • Christoph Kueffer
  • Ann Milbau
  • Bridgett J. Naylor
  • Martin A. Nuñez
  • Anibal Pauchard
  • Tim Seipel
  • Karina L. Speziale
  • Genevieve T. Wright
  • Jake M. Alexander
Original Paper

Abstract

Prevention is regarded as a cost-effective management action to avoid unwanted impacts of non-native species. However, targeted prevention can be difficult if little is known about the traits of successfully invading non-native species or habitat characteristics that make native vegetation more resistant to invasion. Here, we surveyed mountain roads in seven regions worldwide, to investigate whether different species traits are beneficial during primary invasion (i.e. spread of non-native species along roadside dispersal corridors) and secondary invasion (i.e. percolation from roadsides into natural adjacent vegetation), and to determine if particular habitat characteristics increase biotic resistance to invasion. We found primary invasion up mountain roads tends to be by longer lived, non-ruderal species without seed dispersal traits. For secondary invasion, we demonstrate that both traits of the non-native species and attributes of the receiving natural vegetation contribute to the extent of invasion. Non-native species that invade natural adjacent vegetation tend to be shade and moisture tolerant. Furthermore, non-native species invasion was greater when the receiving vegetation was similarly rich in native species. Our results show how mountain roads define which non-native species are successful; first by favouring certain traits in mountain roadsides (the key dispersal pathway to the top), and secondly by requiring a different set of traits when species invade the natural adjacent vegetation. While patterns in species traits were observed at a global level, regional abiotic and biotic variables largely generated region-specific levels of response, suggesting that management should be regionally driven.

Keywords

Biotic resistance Elevation gradient Management Primary invasion Secondary invasion Traits 

Notes

Acknowledgements

Neville Walsh (Royal Botanic Gardens Melbourne) assisted with data collection in Australia, Laurenz Teuber in Norway, and Damiano Righetti collected the data in Switzerland. Data and contributions by LR and TS are supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture Hatch: MONB00363. LC and AP acknowledge funding from ICM 05-002 and CONICYT PFB-023, which supports the Institute of Ecology and Biodiversity (IEB), and FONDECYT 1151007 and 1180205. JJL acknowledges funding by the Research Foundation—Flanders (FWO). BJN, Josh Averett and Kent Coe lead the data collection efforts in Oregon and funding was provided by the USDA Forest Service, Pacific Northwest Research Station. Conflict of Interest: The authors declare that they have no conflict of interest.

Supplementary material

10530_2018_1787_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)
10530_2018_1787_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 19 kb)

References

  1. Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Arevalo JR, Cavieres L, Dietz H, Jakobs G, McDougall KL, Naylor BJ, Otto R, Parks CG, Rew L, Walsh NG (2011) Assembly of non-native floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci 108:656–661CrossRefPubMedGoogle Scholar
  2. Alexander JM, Lembrechts JJ, Cavieres LA, Daehler C, Haider S, Kueffer C, Liu G, McDougall KL, Milbau A, Pauchard A, Rew LJ, Seipel T (2016) Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp Bot 126:89–103CrossRefGoogle Scholar
  3. Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 147–172Google Scholar
  4. Bartoń K (2015) MuMIn: multi-model inference. R package version 1.13.4. http://CRAN.R-project.org/package=MuMIn. Accessed 25 April 2018
  5. Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. R package version, 999375-38; lme4 version 1.1–7. http://CRAN.R-project.org/package=lme4. Accessed 18 March 2018
  6. Boyle B, Hopkins N, Lu Z, Garay JAR, Mozzherin D, Rees T, Matasci N, Narro ML, Piel WH, Mckay SJ, Lowry S, Freeland C, Peet RK, Enquist BJ (2013) The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinform 14:16.  https://doi.org/10.1186/1471-2105-14-16 CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  8. Cavieres LA, Quiroz CL, Molina-Montenegro MA (2007) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156Google Scholar
  9. Cavieres LA, Sanhueza AK, Torres-Mellado G, Casanova-Katny A (2018) Competition between native Antarctic vascular plants and invasive Poa annua changes with temperature and soil nitrogen availability. Biol Invasions.  https://doi.org/10.1007/s10530-017-1650-7 CrossRefGoogle Scholar
  10. Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Syst 34:183–211CrossRefGoogle Scholar
  11. Davis M, Grime P, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  12. Development Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  13. Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367CrossRefPubMedGoogle Scholar
  14. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80CrossRefGoogle Scholar
  15. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht, 6th edn. UTB, StuttgartGoogle Scholar
  16. Elton CS (1958) The ecology of invasions by animals and plants. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  17. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231CrossRefGoogle Scholar
  18. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stolgren TJ, Tilman D, Von Halle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17CrossRefPubMedGoogle Scholar
  19. Grime JP (1977) Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194CrossRefGoogle Scholar
  20. Haider S, Kueffer C, Bruelheide H, Seipel T, Alexander JM, Rew LJ, Arévalo JR, Cavieres LA, McDougall KL, Milbau A, Naylor BJ, Speziale K, Pauchard A (2018) Mountain roads and non-native species modify elevational patterns of plant diversity. Glob Ecol Biogeogr.  https://doi.org/10.1111/geb.12727 CrossRefGoogle Scholar
  21. Hansen MJ, Clevenger A (2005) The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biol Conserv 125:249–259CrossRefGoogle Scholar
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O (2013) D3: the Dispersal and Diaspore Database—baseline data and statistics on seed dispersal. Perspect Plant Ecol Evol Syst 15:180–192CrossRefGoogle Scholar
  24. Keeley JE, Lubin D, Fotheringham CJ (2003) Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada. Ecol Appl 13:1355–1374CrossRefGoogle Scholar
  25. Klotz S, Kühn I, Durka W (eds) (2002) BIOLFLOR – Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. – Schriftenreihe für Vegetationskunde 38. BonnGoogle Scholar
  26. Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315CrossRefGoogle Scholar
  27. Knight KS, Oleksyn J, Jagodzinski AM, Reich PB, Kasprowicz M (2008) Overstorey tree species regulate colonization by native and exotic plants: a source of positive relationships between understorey diversity and invasibility. Divers Distrib 14:666–675CrossRefGoogle Scholar
  28. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  29. Kuebbing S, Nuñez MA (2016) Invasive non-native plants have a greater effect on neighboring natives than other non-natives. Nat Plants 2:16134CrossRefPubMedGoogle Scholar
  30. Kueffer C, McDougall K, Alexander J, Daehler C, Edwards PJ, Haider S, Milbau A, Parks C, Pauchard A, Reshi ZA, Rew L, Schroder M, Seipel T (2013a) Plant invasions into mountain protected areas: assessment, prevention and control at multiple spatial scales. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas: patterns, problems and challenges. Springer series in invasion ecology, vol 7. Springer, Dordrecht, pp 89–113CrossRefGoogle Scholar
  31. Kueffer C, Pyšek P, Richardson D (2013b) Integrative invasion science: model organisms, multi-site studies, unbiased meta-analysis, and invasion syndromes (Tansley review). New Phytol 200:615–633CrossRefPubMedGoogle Scholar
  32. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226CrossRefGoogle Scholar
  33. Larson DL (2003) Native weeds and exotic plants: relationships to disturbance in mixed-grass prairie. Plant Ecol 169:317–333CrossRefGoogle Scholar
  34. LeMaitre DC, Van Wilgen BW, Chapman RA, McKelly DH (1996) Invasive plants and water resources in the Western Cape Province, South Africa: modelling the consequences of a lack of management. J Appl Ecol 33:161–172CrossRefGoogle Scholar
  35. Lembrechts JJ, Milbau A, Nijs I (2014) Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS ONE 9:e89664CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lembrechts JJ, Pauchard A, Lenoir J, Nuñez MA, Geron C, Ven A, Bravo-Monasterio P, Teneb E, Nijs I, Milbau A (2016) Disturbance is the key to plant invasions in cold environments. Proc Natl Acad Sci 113:14061–14066CrossRefPubMedGoogle Scholar
  37. Lembrechts JJ, Alexander JM, Cavieres LA, Haider S, Lenoir J, Kueffer C, McDougall K, Naylor BJ, Nuñez MA, Pauchard A, Rew LJ, Nijs I, Milbau A (2017) Mountain roads shift native and non-native plant species’ ranges. Ecography 40:353–364.  https://doi.org/10.1111/ecog.02200 CrossRefGoogle Scholar
  38. Lembrechts JJ, Rossi E, Milbau A, Nijs I (2018) Habitat properties and plant traits interact as drivers of non-native plant species’ seed production at the local scale. Ecol Evol 8:4209–4223CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc Lond Biol 269:2407–2413CrossRefGoogle Scholar
  40. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228CrossRefPubMedGoogle Scholar
  41. Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198CrossRefPubMedGoogle Scholar
  42. McCann KS (2000) The diversity–stability debate. Nature 405:228–233CrossRefPubMedGoogle Scholar
  43. McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111CrossRefGoogle Scholar
  44. Milbau A, Shevtsova A, Osler N, Mooshammer M, Graae BJ (2013) Plant community type and small-scale disturbances, but not altitude, influence the invisibility in subarctic ecosystems. New Phytol 187:1002–1011CrossRefGoogle Scholar
  45. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres L, Guisan A, Haider S, Jakobs G, McDougall KL, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching high elevations. Front Ecol Environ 7:479–486CrossRefGoogle Scholar
  46. Pearson DA, Ortega YA, Runyon JB, Butler JL (2016) Secondary invasion: the bane of weed management. Biol Conserv 197:8–17CrossRefGoogle Scholar
  47. Petryna L, Moora M, Nuñes CO, Cantero JJ, Zobel M (2002) Are invaders disturbance-limited? Conservation of mountain grasslands in Central Argentina. Appl Veg Sci 5:195–202CrossRefGoogle Scholar
  48. Pollnac FW, Rew LJ (2014) Life after establishment: factors structuring the success of a mountain invader away from disturbed roadsides. Biol Invasions 16:1689–1698CrossRefGoogle Scholar
  49. Pollnac F, Seipel T, Repath C, Rew LJ (2012) Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol Invasions 14:1753–1763CrossRefGoogle Scholar
  50. Rew LJ, Brummer TJ, Pollnac FW, Larson CD, Taylor KT, Taper ML, Fleming JD, Balbach HE (2018) Hitching a ride: seed accrual rates on different types of vehicles. J Environ Manag 206:547–555CrossRefGoogle Scholar
  51. Rosbakh S, Römermann C, Poschlod P (2015) Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alp Bot 125:79–86CrossRefGoogle Scholar
  52. Seipel T, Kueffer C, Rew L, Daehler CC, Pauchard A, Naylor BJ, Alexander JM, Parks CG, Edwards PJ, Arevalo Sierra JR, Cavieres L, Dietz H, Jakobs G, McDougall KL, Otto R, Walsh NG (2012) Processes at multiple scales affect non-native plant species richness and similarity in mountains around the world. Glob Ecol Biogeogr 21:236–246CrossRefGoogle Scholar
  53. Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biol Invasions 13:1255–1268CrossRefGoogle Scholar
  54. Speziale KL, Ezcurra C (2011) Patterns of alien plant invasions in northwestern Patagonia, Argentina. J Arid Environ 75:890–897CrossRefGoogle Scholar
  55. Van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M (2010a) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13:947–958PubMedGoogle Scholar
  56. Van Kleunen M, Weber E, Fischer M (2010b) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245CrossRefPubMedGoogle Scholar
  57. Vilà M, Pino J, Font X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:35–42CrossRefGoogle Scholar
  58. Zefferman E, Stevens JT, Charles GK, Dunbar-Irwin M, Emam T, Fick S, Morales LV, Wolf KM, Young DJN, Young TP (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB Plants.  https://doi.org/10.1093/aobpla/plv056 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models with extensions in ecology with R. Springer, New York.  https://doi.org/10.1007/978-0-387-87458-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Keith L. McDougall
    • 1
    • 2
  • Jonas Lembrechts
    • 3
  • Lisa J. Rew
    • 4
  • Sylvia Haider
    • 5
    • 6
  • Lohengrin A. Cavieres
    • 7
  • Christoph Kueffer
    • 8
    • 9
  • Ann Milbau
    • 10
  • Bridgett J. Naylor
    • 11
  • Martin A. Nuñez
    • 12
  • Anibal Pauchard
    • 13
    • 14
  • Tim Seipel
    • 4
  • Karina L. Speziale
    • 15
  • Genevieve T. Wright
    • 1
  • Jake M. Alexander
    • 16
  1. 1.Office of Environment and HeritageQueanbeyanAustralia
  2. 2.Department of Ecology, Environment and EvolutionLa Trobe UniversityWodongaAustralia
  3. 3.Centre of Excellence on Plant and Vegetation Ecology, CDE C.007University of AntwerpAntwerpBelgium
  4. 4.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  5. 5.Geobotany and Botanical Garden, Institute of BiologyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  6. 6.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  7. 7.Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  8. 8.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  9. 9.Institute of Integrative Biology, Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  10. 10.Research Institute for Nature and Forest – INBOBrusselsBelgium
  11. 11.USDA Forest Service, Pacific Northwest Research StationLa GrandeUSA
  12. 12.Grupo de Ecología de InvasionesINIBIOMA, CONICET, Universidad Nacional del ComahueBarilocheArgentina
  13. 13.Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  14. 14.Institute of Ecology and Biodiversity (IEB)SantiagoChile
  15. 15.Grupo de Biología de la Conservación, Laboratorio EcotonoINIBIOMA (CONICET-UNCOMA)BarilocheArgentina
  16. 16.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland

Personalised recommendations