Biological Invasions

, Volume 20, Issue 12, pp 3445–3460 | Cite as

The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses

  • Evan C. Brenton-Rule
  • Jana Dobelmann
  • James W. Baty
  • Robert L. Brown
  • Libor Dvorak
  • Julien Grangier
  • Maité Masciocchi
  • Chris McGrannachan
  • Chris R. Shortall
  • Julia Schmack
  • Carolien van Zyl
  • Ruan Veldtman
  • Philip J. LesterEmail author
Original Paper


A successful control or eradication programme using biological control or genetically-mediated methods requires knowledge of the origin and the extent of wasp genetic diversity. Mitochondrial DNA variation in the native and invaded range of the social wasp Vespula germanica was used to examine intra-specific genetic variation and invasive source populations. We also examined wasps for the presence of four viruses found in honey bees: Acute bee paralysis virus, Deformed wing virus, Israeli acute paralysis virus and Kashmir bee virus. German wasps showed reduced genetic diversity in the invaded range compared to that of their native range. Populations in the introduced range are likely to have arrived from different source populations. All four viral honey bee pathogens were found in V. germanica, although they varied in their distribution and strain. Multiple introductions of German wasps have occurred for most invaded regions, though some populations are genetically homogenous. The differing locations of origin will guide researchers searching for biocontrol agents and the reduced genetic diversity may make these wasps a potentially viable target for control via gene drives.


Social wasps Vespula germanica Pathogen Virus Pest control 



For submitting samples used in this study we thank: Susan Brenton-Rule, Keith Fleming, Helmut Kovac, John McLean, Hendrik Munks, Laurent Pelozuelo, Adrian Pike, Nuria Roura, Davide Santoro, Rudi Schnitzler, Tim Scott, Rikard Unelius. We thank both a referee and the editor for providing helpful comments that improved the manuscript.

Author contributions

ECB-R, and PJL conceived the project; ECB-R, JD, RLB, LD, JG, MM, CM, CRS, JS, CVZ, and RV collected the samples, ECB-R, JD, JWB analysed the samples; ECB-R led the writing and interpretation with input from all authors.


Funding was provided by a RSNZ Marsden Grant to PJL and a Victoria University of Wellington PhD Scholarship to ECB-R. The Rothamsted Insect Survey, a National Capability, is funded by the Biotechnology and Biological Sciences Research Council under the Core Capability Grant BBS/E/C/000J0200. The collection of samples in Argentina was financed by Grants to Masciocchi Maité—PICT 2015-1150—provided by the Argentinean Agencia de Promoción Científica y Técnica. Bursary and project funding from the South African National Biodiversity Institute (SANBI) who funded the project through the Environmental Resource Management fund of the Department of Environmental Affairs, and the Stellenbosch University Consolidoc programme for providing financial assistance for CvZ.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10530_2018_1786_MOESM1_ESM.docx (150 kb)
Supplementary material 1 (DOCX 150 kb)
10530_2018_1786_MOESM2_ESM.jpg (198 kb)
Supplementary material 2 (JPG 199 kb)


  1. Anderson RM, May RM (1979) Population biology of infectious disease: part I. Nature 280:361–367CrossRefPubMedGoogle Scholar
  2. Archer ME (1998) The world distribution of the Euro-Asian species of Paravespula (Hym., Vespinae). Entomol Mon Mag 134:279–284Google Scholar
  3. Beggs JR, Rees JS, Harris RJ (2002) No evidence for establishment of the wasp parasitoid, Sphecophaga vesparum burra (Cresson) (Hymenoptera: Ichneumonidae) at two sites in New Zealand. N Z J Zool 29:205–211CrossRefGoogle Scholar
  4. Beggs JR, Rees JS, Toft RJ et al (2008) Evaluating the impact of a biological control parasitoid on invasive Vespula wasps in a natural forest ecosystem. Biol Control 44:399–407CrossRefGoogle Scholar
  5. Beggs JR, Brockerhoff EG, Corley JC et al (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526CrossRefGoogle Scholar
  6. Bergstrom DM, Lucieer A, Kiefer K et al (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81CrossRefGoogle Scholar
  7. Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc B Biol Sci 270:921–928CrossRefGoogle Scholar
  8. Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci 108:662–667CrossRefGoogle Scholar
  9. Clapperton BK, Alspach PA, Moller H, Matheson AG (1989) The impact of common and German wasps (Hymenoptera: Vespidae) on the New Zealand beekeeping industry. N Z J Zool 16:325–332CrossRefGoogle Scholar
  10. Corin SE, Lester PJ, Abbott KL, Ritchie PA (2007) Inferring historical introduction pathways with mitochondrial DNA: the case of introduced Argentine ants (Linepithema humile) into New Zealand. Divers Distrib 13:510–518CrossRefGoogle Scholar
  11. Crosland MW (1991) The spread of the social wasp, Vespula germanica, in Australia. N Z J Zool 18:375–388CrossRefGoogle Scholar
  12. Dainat B, Evans JD, Chen YP et al (2012) Dead or alive: Deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl Environ Microbiol 78:981–987CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dearden PK, Gemmell NJ, Mercier OR et al (2017) The potential for the use of gene drives for pest control in New Zealand: a perspective. J R Soc N Z. CrossRefGoogle Scholar
  14. Dobelmann J, Loope KJ, Wilson-Rankin E et al (2017) Fitness in invasive social wasps: the role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126:1208–1218CrossRefGoogle Scholar
  15. Donovan BJ, Read PEC (1987) Attempted biological control of social wasps, Vespula spp., (Hymenoptera: Vespidae) with Sphecophaga vesparum (curtis) (Hymenoptera: Ichneumonidae) in New Zealand. N Z J Zool 14:329–335CrossRefGoogle Scholar
  16. Dowling DK, Tompkins DM, Gemmell NJ (2015) The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster. Evol Appl 8:871–880CrossRefPubMedPubMedCentralGoogle Scholar
  17. Drury DW, Dapper AL, Siniard DJ et al (2017) CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci Adv 3:e1601910CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dupas S, Carton Y, Poiriè M (2003) Genetic dimension of the coevolution of virulence-resistance in Drosophila—parasitoid wasp relationships. Heredity 90:84–89CrossRefPubMedGoogle Scholar
  19. Edwards E, Toft R, Joice N, Westbrooke I (2017) The efficacy of Vespex® wasp bait to control Vespula species (Hymenoptera: Vespidae) in New Zealand. Int J Pest Manag 63:266–272CrossRefGoogle Scholar
  20. Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Concerning RNA-guided gene drives for the alteration of wild populations. Elife 3:1–21CrossRefGoogle Scholar
  21. Evison SEF, Roberts KE, Laurenson L et al (2012) Pervasiveness of parasites in pollinators. PLoS ONE 7:e30641CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gegear RJ, Otterstatter MC, Thomson JD (2006) Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc R Soc B Biol Sci 273:1073–1078CrossRefGoogle Scholar
  23. Genersch E, Yue C, Fries I, De Miranda JR (2006) Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J Invertebr Pathol 91:61–63CrossRefPubMedGoogle Scholar
  24. Goolsby JA, De Barro PJ, Makinson JR et al (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297CrossRefPubMedGoogle Scholar
  25. Grodowitz MJ, Center TD, Cofrancesco AF, Freedman JE (1997) Release and establishment of Hydrellia balciunasi (Diptera: Ephydridae) for the biological control of the submersed aquatic plant Hydrilla verticillata (Hydrocharitaceae) in the United States. Biol Control 9:15–23CrossRefGoogle Scholar
  26. Gruber MAM, Cooling M, Baty JW et al (2017) Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile. Sci Rep 7:3304CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hammond A, Galizi R, Kyrou K et al (2016) A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34:78–83CrossRefPubMedGoogle Scholar
  28. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefPubMedGoogle Scholar
  29. Hoffmann BD (2011) Eradication of populations of an invasive ant in northern Australia: successes, failures and lessons for management. Biodivers Conserv 20:3267–3278CrossRefGoogle Scholar
  30. Jones RAC, Coutts BA (2015) Spread of introduced viruses to new plants in natural ecosystems and the threat this poses to plant biodiversity. Mol Plant Pathol 16:541–545CrossRefPubMedGoogle Scholar
  31. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170CrossRefGoogle Scholar
  32. Lester PJ, Brown SDJ, Edwards ED et al (2014a) Critical issues facing New Zealand entomology. N Z Entomol 37:1–13CrossRefGoogle Scholar
  33. Lester PJ, Gruber MAM, Brenton-Rule EC et al (2014b) Determining the origin of invasions and demonstrating a lack of enemy release from microsporidian pathogens in common wasps (Vespula vulgaris). Divers Distrib 20:964–974CrossRefGoogle Scholar
  34. Lester PJ, Bosch PJ, Gruber MAM et al (2015) No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS ONE 10:e0121358CrossRefPubMedPubMedCentralGoogle Scholar
  35. Levitt AL, Singh R, Cox-Foster DL et al (2013) Cross-species transmission of honey bee viruses in associated arthropods. Virus Res 176:232–240CrossRefPubMedGoogle Scholar
  36. MacIntyre P, Hellstrom J (2015) An evaluation of the costs of pest wasps (Vespula species) in New Zealand. Department of Conservation and Ministry for Primary Industries, WellingtonGoogle Scholar
  37. Masciocchi M, Corley J (2013) Distribution, dispersal and spread of the invasive social wasp (Vespula germanica) in Argentina. Austral Ecol 38:162–168CrossRefGoogle Scholar
  38. Masciocchi M, Pereira AJ, Corley JC (2016) Local dynamics of worker activity of the invasive Vespula germanica and V. vulgaris (Hymenoptera: Vespidae) wasps in Argentina. Ecol Entomol 41:105–111CrossRefGoogle Scholar
  39. McFadden AMJ, Tham K-M, Stevenson M et al (2014) Israeli acute paralysis virus not detected in Apis mellifera in New Zealand in a national survey. J Apic Res 53:520–527CrossRefGoogle Scholar
  40. McMahon DP, Natsopoulou ME, Doublet V et al (2016) Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc R Soc B Biol Sci. CrossRefGoogle Scholar
  41. Meeus I, Brown MJF, De Graaf DC, Smagghe G (2011) Effects of invasive parasites on bumble bee declines. Conserv Biol 25:662–671CrossRefPubMedGoogle Scholar
  42. Meeus I, de Miranda JR, de Graaf DC et al (2014) Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus terrestris) reproductive success. J Invertebr Pathol 121:64–69CrossRefPubMedGoogle Scholar
  43. Moller H, Tilley J, Thomas B, Gaze P (1991) Effect of introduced social wasps on the standing crop of honeydew in New Zealand beech forests. N Z J Zool 18:171–179CrossRefGoogle Scholar
  44. Niu J, Meeus I, Smagghe G (2016) Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and avirulent virus infections. Sci Rep 6:1–9CrossRefGoogle Scholar
  45. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.5-1.
  46. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  47. Prost S, Anderson CNK (2011) TempNet: a method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol Evol 2:663–667CrossRefGoogle Scholar
  48. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  49. Rejmánek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal? In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN Species Survival Commission, Gland, pp 249–253Google Scholar
  50. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  51. Santamaria J, Villalobos EM, Brettell L et al (2017) Evidence of Varroa-mediated Deformed wing virus spillover in Hawaii. J Invertebr Pathol. CrossRefPubMedGoogle Scholar
  52. Schroeder DC, Martin SJ (2012) Deformed wing virus: the main suspect in unexplained honeybee deaths. Virulence 3:589–598CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sébastien A, Lester PJ, Hall RJ et al (2015) Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen. Biol Lett 11:20150610CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sekiné K, Furusawa T, Hatakeyama M (2015) The boule gene is essential for spermatogenesis of haploid insect male. Dev Biol 399:154–163CrossRefPubMedGoogle Scholar
  55. Silverman J, Brightwell RJ (2008) The Argentine ant: challenges in managing an invasive unicolonial pest. Annu Rev Entomol 53:231–252CrossRefPubMedGoogle Scholar
  56. Speck SH, Ganem D (2010) Viral latency and its regulation: lessons from the γ-herpesviruses. Cell Host Microbe 8:100–115CrossRefPubMedPubMedCentralGoogle Scholar
  57. Spradbery J, Maywald G (1992) The distribution of the European or German wasp, Vespula germanica (F.) (Hymenoptera, Vespidae), in Australia: past, present and future. Aust J Zool 40:495–510CrossRefGoogle Scholar
  58. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101:11030–11035CrossRefPubMedGoogle Scholar
  59. Thomas CR (1960) The European wasp (Vespula germanica Fab.) in New Zealand. N Z Dep Sci Ind Res Inf Ser 27:1–74Google Scholar
  60. Thomas CD, Moller H, Plunkett GM, Harris RJ (1990) The prevalence of introduced Vespula vulgaris wasps in a New Zealand beech forest community. N Z J Ecol 13:63–72Google Scholar
  61. Tribe GD, Richardson DM (1994) The European wasp, Vespula germanica (Fabricius) (Hymenoptera, Vespidae), in southern Africa and its potential distribution as predicted by ecoclimatic matching. Afr Entomol 2:1–6Google Scholar
  62. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci 97:5948–5953CrossRefGoogle Scholar
  63. Veldtman R, Addison P, Tribe GD (2012) Current status and potential future impact of invasive vespid wasps (Vespula germanica and Polistes dominulus) in South Africa. IOBC/WPRS Bull 75:217–227Google Scholar
  64. Vincent SJ, Coutts BA, Jones RAC (2014) Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface. PLoS ONE 9:e91224CrossRefPubMedPubMedCentralGoogle Scholar
  65. Webber BL, Raghu S, Edwards OR (2015) Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proc Natl Acad Sci 112:10565–10567CrossRefPubMedGoogle Scholar
  66. Whitehead VB, Prins AJ (1975) The European wasp, Vespula germanica (F.), in the Cape Peninsula. J Entomol Soc S Afr 38:39–42Google Scholar
  67. Willink A (1980) Sobre la presencia de Vespula germanica (Fabricius) en la Argentina. Neotropica 26:205–206Google Scholar
  68. Wood GM, Hopkins DC, Schellhorn NA (2006) Preference by Vespula germanica (Hymenoptera: Vespidae) for processed meats: implications for toxic baiting. J Econ Entomol 99:263–267CrossRefPubMedGoogle Scholar
  69. Zhang C, Yan SQ, Bin Shen B et al (2017) RNAi knock-down of the Bemisia tabaci Toll gene (BtToll) increases mortality after challenge with destruxin A. Mol Immunol 88:164–173CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Evan C. Brenton-Rule
    • 1
  • Jana Dobelmann
    • 1
  • James W. Baty
    • 1
    • 2
  • Robert L. Brown
    • 3
  • Libor Dvorak
    • 4
  • Julien Grangier
    • 5
  • Maité Masciocchi
    • 6
  • Chris McGrannachan
    • 7
  • Chris R. Shortall
    • 8
  • Julia Schmack
    • 9
  • Carolien van Zyl
    • 10
    • 11
  • Ruan Veldtman
    • 10
    • 11
  • Philip J. Lester
    • 1
    Email author
  1. 1.Centre for Biodiversity and Restoration EcologyVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Malaghan Institute of Medical ResearchWellingtonNew Zealand
  3. 3.Landcare ResearchLincolnNew Zealand
  4. 4.Mestske Museum Marianske LazneMariánské LázněCzech Republic
  5. 5.UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRSUniversité de LyonVilleurbanneFrance
  6. 6.Grupo de Ecología de Poblaciones de InsectosCONICET - INTA EEA BarilocheBarilocheArgentina
  7. 7.School of Biological SciencesMonash UniversityMelbourneAustralia
  8. 8.Rothamsted Insect SurveyRothamsted ResearchHarpendenEngland, UK
  9. 9.Centre for Biodiversity and Biosecurity, School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  10. 10.South African National Biodiversity InstituteKirstenbosch Research CentreClaremont, Cape TownSouth Africa
  11. 11.Department of Conservation Ecology and EntomologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations