Advertisement

Biological Invasions

, Volume 20, Issue 12, pp 3431–3444 | Cite as

Weak nestmate discrimination behavior in native and invasive populations of a yellowjacket wasp (Vespula pensylvanica)

  • Kevin J. Loope
  • Jocelyn G. Millar
  • Erin E. Wilson Rankin
Original Paper

Abstract

In geographic regions with warm winters, invasive yellowjacket wasp colonies (genus Vespula) often exhibit polygyny (multiple queens) and persist for multiple years, despite these phenomena being rare in the native range. Here, we test the hypothesis that polygyny, caused by foreign queens being accepted into an existing colony, is the result of relaxed nestmate recognition in the invasive range, as has been observed in some supercolonial invasive ants. In bioassays with wild colonies in the field, we found that nestmate discrimination was weak in both invasive (Hawaii) and native (California) populations of Vespula pensylvanica, with significant nestmate discrimination in only ~ 30% of trials. We also found that the diversity and variability of cuticular hydrocarbons, chemical compounds that mediate nestmate recognition, were not reduced in introduced populations, unlike several supercolonial invasive ant species. Our findings suggest that ancestral weak nestmate discrimination behavior of V. pensylvanica may make this species pre-adapted to transition to polygyny and extended colony lifespans when introduced into environments with benign winters that facilitate foreign queens joining existing colonies in late season.

Keywords

Nestmate recognition Cuticular hydrocarbons Supercolonies Polygyny Social insects Hawaii 

Notes

Acknowledgements

We thank David Rankin and Sarah Barney for assistance in the field, Roger and Gail Wynn for allowing us to work on their property, and Steve McElfresh and Sean Halloran for help with chemical analyses. Chien Yu helped with video and chemical data collection. Elizabeth Hunter gave statistical advice, and Jessica Purcell gave helpful comments on a version of this manuscript. This work was supported by a USDA NIFA Postdoctoral Fellowship (2016-67012-24681) to KJL and an NSF DEB (#1557163) to EWR. Work in Hawaii Volcanoes National Park was conducted under permit HAVO-2015-SCI-0044.

Supplementary material

10530_2018_1783_MOESM1_ESM.xlsx (15 kb)
Online Electronic Resource 1: a spreadsheet of all cuticular compounds detected, with diagnostic ions. (XLSX 14 kb)

Online Electronic Resource 2: A video depicting examples of short and long antennations, and attacks on a focal presented worker, and an attack and trophallaxis with a non-focal worker. (MP4 7123 kb)

10530_2018_1783_MOESM3_ESM.mp4 (6.8 mb)
Online Electronic Resource 3: A video depicting mutual antennation between a colony worker and a focal presented worker, followed by solicitation of trophallaxis and then attack. (MP4 6913 kb)
10530_2018_1783_MOESM4_ESM.mp4 (3.7 mb)
Online Electronic Resource 4: A video depicting mutual antennation and trophallaxis between a colony worker and a focal presented worker. (MP4 3816 kb)
10530_2018_1783_MOESM5_ESM.jpg (3.7 mb)
Online Electronic Resource 5 (JPEG 3775 kb)

References

  1. Akre RD, Myhre EA (1993) The nesting biology and behavior of the California yellowjacket, Vespula sulphurea (Hymenoptera, Vespidae). Entomol News 105:141–148Google Scholar
  2. Akre RD, Garnett WB, Mac Donald JF et al (1976) Behavior and colony development of Vespula pensylvanica and V. atropilosa (Hymenoptera: Vespidae). J Kansas Entomol Soc 49:63–84Google Scholar
  3. Beggs JR, Brockerhoff EG, Corley JC et al (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  5. Brandt M, Van Wilgenburg E, Tsutsui ND (2009) Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol Ecol 18:997–1005CrossRefGoogle Scholar
  6. Breiman L (2001) Random forests. Mach Learn 45:5–32.  https://doi.org/10.1023/A:1010933404324 CrossRefGoogle Scholar
  7. Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46.  https://doi.org/10.1007/s00049-016-0227-8 CrossRefGoogle Scholar
  8. Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865CrossRefGoogle Scholar
  9. Cremer S, Ugelvig LV, Drijfhout FP et al (2008) The evolution of invasiveness in garden ants. PLoS ONE 3:e3838.  https://doi.org/10.1371/journal.pone.0003838 CrossRefGoogle Scholar
  10. Crosland MWJ (1991) The spread of the social wasp, Vespula germanica, in Australia. New Zeal J Zool 18:375–387.  https://doi.org/10.1080/03014223.1991.10422843 CrossRefGoogle Scholar
  11. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927.  https://doi.org/10.1658/1100-9233(2003)014[0927:VAPORF]2.0.CO;2 CrossRefGoogle Scholar
  12. Downs SG, Ratnieks F (2000) Adaptive shifts in honey bee (Apis mellifera L.) guarding behavior support predictions of the acceptance threshold model. Behav Ecol 11:326–333.  https://doi.org/10.1093/beheco/11.3.326 CrossRefGoogle Scholar
  13. Errard C, Delabie J, Jourdan H, Hefetz A (2005) Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species. Naturwissenschaften 92:319–323.  https://doi.org/10.1007/s00114-005-0628-y CrossRefGoogle Scholar
  14. Esponda F, Gordon DM (2015) Distributed nestmate recognition in ants. Proc R Soc London Ser B Biol Sci 282:20142838CrossRefGoogle Scholar
  15. Friard O, Gamba M (2016) BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol 7:1325–1330.  https://doi.org/10.1111/2041-210X.12584 CrossRefGoogle Scholar
  16. Gambino P (1991) Reproductive plasticity of Vespula pensylvanica (Hymenoptera: Vespidae) on Maui and Hawaii Islands, USA. New Zeal J Zool 18:139–149CrossRefGoogle Scholar
  17. Gambino P, Medeiros AC, Loope LL (1990) Invasion and colonization of upper elevations on East Maui (Hawaii) by Vespula pensylvanica (Hymenoptera: Vespidae). Ann Entomol Soc Am 83:1088–1095CrossRefGoogle Scholar
  18. Gamboa GJ, Foster RL, Scope JA, Bitterman AM (1991) Effects of stage of colony cycle, context, and intercolony distance on conspecific tolerance by paper wasps (Polistes fuscatus). Behav Ecol Sociobiol 29:87–94.  https://doi.org/10.1007/BF00166482 CrossRefGoogle Scholar
  19. Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci USA 99:6075–6079CrossRefGoogle Scholar
  20. Goodisman MA, Matthews RW, Spradbery JP et al (2001) Reproduction and recruitment in perennial colonies of the introduced wasp Vespula germanica. J Hered 92:346–349CrossRefGoogle Scholar
  21. Greene A (1991) Dolichovespula and Vespula. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell University Press, Ithaca, NY, pp 263–305Google Scholar
  22. Hanna C, Cook ED, Thompson AR et al (2014) Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol Invasions 16:283–294.  https://doi.org/10.1007/s10530-013-0517-9 CrossRefGoogle Scholar
  23. Helanterä H, Strassmann JE, Carrillo J, Queller DC (2009) Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol Evol 24:341–349CrossRefGoogle Scholar
  24. Holldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15CrossRefGoogle Scholar
  25. Holway DA, Suarez AV (2004) Colony-structure variation and interspecific competitive ability in the invasive Argentine ant. Oecologia 138:216–222.  https://doi.org/10.1007/s00442-003-1414-1 CrossRefGoogle Scholar
  26. Holway DA, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33(1):181–233CrossRefGoogle Scholar
  27. Huszár DB, Larsen RS, Carlsen S et al (2014) Convergent development of ecological, genetic, and morphological traits in native supercolonies of the red ant Myrmica rubra. Behav Ecol Sociobiol 68:1859–1870.  https://doi.org/10.1007/s00265-014-1795-7 CrossRefGoogle Scholar
  28. Leniaud L, Pichon A, Uva P, Bagnres AG (2009) Unicoloniality in reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull Entomol Res 99:1–10CrossRefGoogle Scholar
  29. Malham JP, Rees JS, Alspach PA et al (1991) Traffic rate as an index of colony size in Vespula wasps. New Zeal J Zool 18:105–109CrossRefGoogle Scholar
  30. Martin SJ, Drijfhout F (2009) How reliable is the analysis of complex cuticular hydrocarbon profiles by multivariate statistical methods? J Chem Ecol 35:375–382CrossRefGoogle Scholar
  31. Masciocchi M, Corley J (2013) Distribution, dispersal and spread of the invasive social wasp (Vespula germanica) in Argentina. Austral Ecol 38:162–168.  https://doi.org/10.1111/j.1442-9993.2012.02388.x CrossRefGoogle Scholar
  32. Matthews RW (1982) Social parasitism in yellowjackets (Vespula). In: Jaisson P (ed) Social insects in the tropics, vol 1. Universite´ Paris–Nord, Paris, pp 193–202Google Scholar
  33. Moore D, Liebig J (2010) Mixed messages: fertility signaling interferes with nestmate recognition in the monogynous ant Camponotus floridanus. Behav Ecol Sociobiol 64:1011–1018CrossRefGoogle Scholar
  34. Nunes TM, Nascimento FS, Turatti IC et al (2008) Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim Behav 75:1165–1171.  https://doi.org/10.1016/j.anbehav.2007.08.028 CrossRefGoogle Scholar
  35. O’Donnell S (2001) Worker biting interactions and task performance in a swarm-founding eusocial wasp (Polybia occidentalis, Hymenoptera: Vespidae). Behav Ecol 12:353CrossRefGoogle Scholar
  36. O’Donnell S (2006) Polybia wasp biting interactions recruit foragers following experimental worker removals. Anim Behav 71:709–715CrossRefGoogle Scholar
  37. Oliveira RC, Oi CA, Vollet-Neto A, Wenseleers T (2016) Intraspecific worker parasitism in the common wasp, Vespula vulgaris. Anim Behav 113:79–85.  https://doi.org/10.1016/j.anbehav.2015.12.025 CrossRefGoogle Scholar
  38. Pickett KM, Osborne DM, Wahl D, Wenzel JW (2001) An enormous nest of Vespula squamosa from Florida, the largest social wasp nest reported from North America, with notes on colony cycle and reproduction. J N Y Entomol Soc 109:408–415CrossRefGoogle Scholar
  39. Plunkett GM, Moller H, Hamilton C et al (1989) Overwintering colonies of German (Vespula germanica) and common wasps (Vespula vulgaris) (Hymenoptera: Vespidae) in New Zealand. New Zeal J Zool 16:345–353CrossRefGoogle Scholar
  40. R Core Team (2017) R: A language and environment for statistical computing. http://www.R-project.org/. R Foundation for Statistical Computing, Vienna, Austria
  41. Ratnieks FLW, Vetter RS, Visscher PK (1996) A polygynous nest of Vespula pensylvanica from California with a discussion of possible factors influencing the evolution of polygyny in Vespula. Insectes Soc 43:401–410CrossRefGoogle Scholar
  42. Reeve HK (1989) The evolution of conspecific acceptance thresholds. Am Nat 133:407–435CrossRefGoogle Scholar
  43. Ross KG, Matthews RW (1982) Two polygynous overwintered Vespula squamosa colonies from the southeastern US (Hymenoptera: Vespidae). Fla Entomol 65:176–184CrossRefGoogle Scholar
  44. Ross K, Visscher P (1983) Reproductive plasticity in yellowjacket wasps: a polygynous, perennial colony of Vespula maculifrons. Psyche 90:179–192CrossRefGoogle Scholar
  45. Ross KG, Vargo EL, Keller L (1996) Social evolution in a new environment: the case of introduced fire ants. Proc Natl Acad Sci USA 93:3021–3025CrossRefGoogle Scholar
  46. Ruther J, Sieben S, Schricker B (1998) Role of cuticular lipids in nestmate recognition of the European hornet Vespa crabro L. (Hymenoptera, Vespidae). Insectes Soc 45:169–179CrossRefGoogle Scholar
  47. Ruther J, Sieben S, Schricker B (2002) Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89:111–114CrossRefGoogle Scholar
  48. Schmidt AM, d’Ettorre P, Pedersen JS (2010) Low levels of nestmate discrimination despite high genetic differentiation in the invasive pharaoh ant. Front Zool 7:20.  https://doi.org/10.1186/1742-9994-7-20 CrossRefGoogle Scholar
  49. Spradbery JP (1973) Wasps: An account of the biology and natural history of solitary and social wasps. University of Washington Press, SeattleGoogle Scholar
  50. Starks PTB, Fischer DJ, Watson RE et al (1998) Context-dependent nestmate-discrimination in the paper wasp, Polistes dominulus: a critical test of the optimal acceptance threshold model. Anim Behav 56:449–458.  https://doi.org/10.1006/anbe.1998.0778 CrossRefGoogle Scholar
  51. Steinmetz I, Schmolz E (2005) Nest odor dynamics in the social wasp Vespula vulgaris. Naturwissenschaften 92:414–418.  https://doi.org/10.1007/s00114-005-0006-9 CrossRefGoogle Scholar
  52. Stewart S, Fritz G, Fritz A, Deets AJ (2017) Reproductive partitioning in Vespula squamosa (Hymenoptera: Vespidae). Fla Entomol 100:266–269CrossRefGoogle Scholar
  53. Suarez AV, Holway DA, Liang D et al (2002) Spatiotemporal patterns of intraspecific aggression in the invasive Argentine ant. Anim Behav 64:697–708.  https://doi.org/10.1006/anbe.2002.4011 CrossRefGoogle Scholar
  54. Thomas CR (1960) The European wasp (Vespula germanica Fab.) in New Zealand. In: New Zealand Department of Scientific and Industrial Research Information Series—No. 27, pp 5–73Google Scholar
  55. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA 97:5948–5953CrossRefGoogle Scholar
  56. Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci USA 100:1078–1083CrossRefGoogle Scholar
  57. Van Zweden JS, D’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 222–243CrossRefGoogle Scholar
  58. van Zweden JS, Pontieri L, Pedersen JS (2014) A statistical approach to identify candidate cues for nestmate recognition. Front Ecol Evol 2:1–11.  https://doi.org/10.3389/fevo.2014.00073 CrossRefGoogle Scholar
  59. Vetter RS, Visscher PK (1997) Plasticity of annual cycle in Vespula pensylvanica shown by a third year polygynous nest and overwintering of queens inside nests. Insectes Soc 44:353–364CrossRefGoogle Scholar
  60. Visscher PK, Vetter RS (2003) Annual and multi-year nests of the western yellowjacket, Vespula pensylvanica, in California. Insectes Soc 50:160–166CrossRefGoogle Scholar
  61. Wiener A, Liaw M (2002) Classification and regression by randomForest. R News 2:18–22Google Scholar
  62. Wilson EE, Holway DA (2010) Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 91:3294–3302CrossRefGoogle Scholar
  63. Wilson EE, Mullen LM, Holway DA (2009) Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc Natl Acad Sci USA 106:12809–12813CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of ChemistryUniversity of California, RiversideRiversideUSA

Personalised recommendations