Biological Invasions

, Volume 20, Issue 9, pp 2395–2420 | Cite as

Population genetic analyses of complex global insect invasions in managed landscapes: a Leptocybe invasa (Hymenoptera) case study

  • G. Dittrich-SchröderEmail author
  • T. B. Hoareau
  • B. P. Hurley
  • M. J. Wingfield
  • S. Lawson
  • H. F. Nahrung
  • B. Slippers
Original Paper


Increased rates of movement and the accumulation of insects establishing outside their native range is leading to the ‘global homogenization’ of agricultural and forestry pests. We use an invasive wasp, Leptocybe invasa (Hymenoptera: Eulophidae), as a case study to highlight the rapid and complex nature of these global invasions and how they can complicate management options. To trace the invasion history of L. invasa globally, we characterised the genetic diversity within and between populations from its origin and invaded regions using mitochondrial and nuclear markers. Three mitochondrial Haplogroups were identified, of which two are likely different species that appear to have been independently introduced into different parts of the world. One type (Mitochondrial Haplogroup 1) occurs globally, and is the exclusive type found in Europe, the Middle East, South America and most of Africa. The second type (Mitochondrial Haplogroup 2) co-occurs with the first-type in Laos, South Africa, Thailand and Vietnam, while a third type (Mitochondrial Haplogroup 3) occurs exclusively in Australia, its native range. The distinction of the two invasive Haplogroups was supported by analysis of newly developed simple sequence repeat (microsatellite) markers in populations from 13 countries. Further analyses using clustering methods and approximate Bayesian computation suggested the occurrence of hybridisation in the Laos population and revealed that an unsampled population was the origin of Mitochondrial Haplogroup 1. The analyses also showed little genetic differentiation within the invasive populations, suggesting a limited original introduction from a very small population followed by rapid, global range expansion in a stepwise fashion. Results of this study should provide some guidelines for characterizing invasion pathways of new invasive insect pests.


Invasive insect pest Gall wasp Forest entomology Complex invasion pathways 



We thank the following individuals for supplying specimens without which this study would not have been possible: Dr. Philip Nyeko, Dr. Zvi Mendel, Dr. Eston Mutitu, Prof. Jolanda Roux, Dr. Orlando Campolo, Ms. Titiporn Saimanee, Dr. John LaSalle, Ms. Nicole Fisher, Prof. Stefan Neser and Dr. Carlos Wilcken. We are grateful to Mrs. Alisa Postma Smidt for assembling the L. invasa genome, Dr. Irene Barnes for assistance with microsatellite development as well as to Mrs. Renate Zipfel and Dr. Kerry Reid for valuable discussions and assistance with microsatellite scoring. Members of the Tree Protection Co-operative Programme (TPCP), the THRIP Initiative of the Department of Trade and Industry and the National Research Foundation (NRF) (NRF Grant Number 88227) are acknowledged for providing funding.

Author contributions

GDS, TBH, BS, BH and MJW designed research; GDS performed research; GDS, BS and TBH analysed data; BPH, MJW, SL and HFN provided material and contributed to interpretation of the results; all authors contributed to the writing of the manuscript.

Supplementary material

10530_2018_1709_MOESM1_ESM.docx (167 kb)
Supplementary material 1 (DOCX 167 kb)
10530_2018_1709_MOESM2_ESM.pptx (670 kb)
Supplementary material 2 (PPTX 669 kb)


  1. Ács Z, Challis RJ, Bihari P, Blaxter M, Hayward A, Melika G, Csóka G, Pénzes Z, Pujade-Villar J, Nieves-Aldrey J, Schönrogge K, Stone GN (2010) Phylogeny and DNA barcoding of inquiline oak gallwasps (Hymenoptera: Cynipidae) of the Western Palearctic. Mol Phylogenet Evol 55:210–225CrossRefPubMedGoogle Scholar
  2. Akhtar MS, Patankar NV, Gaur A (2012) Observations on the biology and male of Eucalyptus gall wasp Leptocybe invasa Fisher and La Salle (Hymenoptera: Eulophidae). Indian J Entomol 74:173–175Google Scholar
  3. Arca MA, Mougel F, Guillemaud T, Dupas S, Rome Q, Perrard A, Muller F, Fossoud A, Capdevielle-Dulac C, Torres-Leguizamon M, Chen XX, Tan JL, Jung C, Villemant C, Arnold G, Silvain JF (2015) Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol Invasions. CrossRefGoogle Scholar
  4. Auger-Rozenberg MA, Boivin T, Magnoux E, Courtin C, Roques A, Kerdelhue C (2012) Inferences on population history of a seed chalcid wasp: invasion success despite a severe founder effect from an unexpected source population. Mol Ecol 21:6086–6103CrossRefPubMedGoogle Scholar
  5. Boissin E, Hurley B, Wingfield MJ, Vasaitis R, Stenlid J, Davis C, De Groot P, Ahumada R, Carnegie A, Goldarazena A, Klasmer P, Wermelinger B, Slippers B (2012) Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol Ecol 21:5728–5744CrossRefPubMedGoogle Scholar
  6. Brouat C, Tollenaere C, Estoup A, Loiseau A, Sommer S, Soanandrasana R, Rahalison L, Rajerison M, Piry S, Goodman SM, Duplantier J-M (2014) Invasion genetics of a human commensal rodent: the black rat Rattus rattus in Madagascar. Mol Ecol 23:4153–4167CrossRefPubMedGoogle Scholar
  7. Brodeur J (2012) Host specificity in biological control: insights from opportunistic pathogens. Evolutionary Applications 5:470–480CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caron V, Norgate M, Ede FJ, Nyman T, Sunnucks P (2013) Novel microsatellite DNA markets indicate strict parthenogenesis and few genotypes in the invasive willow sawfly Nematus oligospilus. Bull Entomol Res 103:74–88CrossRefPubMedGoogle Scholar
  9. Carter M, Smith M, Harrison R (2010) Genetic analyses of the Asian longhorn beetle (Coleoptera, Cerambycidae, Anoplophora glabripennis), in North America, Europe and Asia. Biol Invasions 12:1165–1182CrossRefGoogle Scholar
  10. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA (2015) Biological invasions, climate change and genomics. Evol Appl 8:23–46CrossRefPubMedGoogle Scholar
  11. Cognato AI (2006) Standard percent DNA sequence divergence for insects does not predict species boundaries. J Econ Entomol 99:1037–1045CrossRefPubMedGoogle Scholar
  12. Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism. DNA sequence and microsatellite data. Bioinformatics 30:1187–1189CrossRefPubMedGoogle Scholar
  13. de Meeûs T, Prugnolle F, Agnew P (2007) Asexual reproduction: genetics and evolutionary aspects. Cell Mol Life Sci 64:1355–1372CrossRefPubMedGoogle Scholar
  14. Dittrich-Schröder G, Wingfield MJ, Klein H, Slippers B (2012a) DNA extraction techniques for DNA barcoding of minute gall-inhabiting wasps. Mol Ecol Resour 12:109–115CrossRefPubMedGoogle Scholar
  15. Dittrich-Schröder G, Wingfield MJ, Hurley BP, Slippers B (2012b) Diversity in Eucalyptus susceptibility to the gall-forming wasp Leptocybe invasa. Agric For Entomol 14:419–427CrossRefGoogle Scholar
  16. Dittrich-Schröder G, Harney M, Neser S, Joffe T, Bush S, Hurley BP, Wingfield MJ, Slippers B (2014) Biology and host preference of Selitrichodes neseri: a potential biological control agent of the Eucalyptus gall wasp, Leptocybe invasa. Biol Control 78:33–41CrossRefGoogle Scholar
  17. Earl D, von Holdt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCRURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN version 3.0: an integrated software package for population genetics data analysis. Evolut Bioinform Online 1:47–50Google Scholar
  20. Facon B, Hufbauer RA, Tayeh A, Loiseau A, Lombaert E, Vitalis R, Guillemaud T, Lundgren JG, Estoup A (2011) Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr Biol 21:424–427CrossRefPubMedGoogle Scholar
  21. Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94CrossRefPubMedGoogle Scholar
  22. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  23. Garnas JR, Hurley BP, Slippers B, Wingfield MJ (2013) Biological control of forest plantation pests in an interconnected world requires greater international focus. Int J Pest Manag 58:211–223CrossRefGoogle Scholar
  24. Garnas JR, Auger-Rozenberg M, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18:935–952CrossRefGoogle Scholar
  25. Gotzek D, Axen HJ, Suarez AV, Helms Cahan S, Shoemaker D (2015) Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol Ecol 24:374–388CrossRefPubMedGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Available from
  27. Hastings JM, Schultheis PJ, Whitson M, Holliday CW, Coelho JR, Mendell AM (2008) DNA barcoding of new world cicada killers (Hymenoptera: Crabronidae). Zootaxa 1713:27–38Google Scholar
  28. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Ser B 270:313–321CrossRefGoogle Scholar
  29. Heimpel GE, Lundgren JG (2000) Sex ratios of commercially reared biological control agents. Biol Control 19:77–93CrossRefGoogle Scholar
  30. Hoffmann AA, Reynolds KT, Nash MA, Week AR (2008) A high incidence of parthenogenesis in agricultural pests. Proc R Soc B 275:2473–2481CrossRefPubMedGoogle Scholar
  31. Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a crossplatform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517CrossRefPubMedGoogle Scholar
  32. Holway DA, Suarez AV (1999) Animal behavior: an essential component of invasion biology. Trends Ecol Evol 14:328–330CrossRefPubMedGoogle Scholar
  33. Hurley BP, Govender P, Coutinho TA, Wingfield BD, Wingfield MJ (2007) Fungus gnats and other Diptera in South African forestry nurseries and their possible association with the pitch canker fungus. S Afr J Sci 103:43–46Google Scholar
  34. Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933CrossRefGoogle Scholar
  35. Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 8:1720–1731CrossRefGoogle Scholar
  36. Kim I (2008) Evolution of gall inducing Eulophidae (Hymenoptera: Chalcidoidea) on Myrtaceae in Australia. PhD thesis, Australian National UniversityGoogle Scholar
  37. Kim I, Mendel Z, Protasov A, Blumberg D, La Salle J (2008) Taxonomy, biology, and efficacy of two Australian parasitoids of the eucalyptus gall wasp, Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae). Zootaxa 1910:1–20Google Scholar
  38. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kronauer DJC, Pierce N, Keller L (2012) Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol Ecol 21:52221–55235CrossRefGoogle Scholar
  40. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  41. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  42. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30:3276–3278CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leach IM, Ferber S, van de Zande L, Beukeboom LW (2012) Genetic variability of arrhenotokous and thelytokous Venturia canescens (Hymenoptera). Genetica 140:53–63CrossRefGoogle Scholar
  44. Liebhold AM, MacDonald WL, Bergdahl D, Mastro VC (1995) Invasion by exotic forest pests: a threat to forest ecosystems. For Sci Monogr 30:1–49Google Scholar
  45. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathways for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143CrossRefGoogle Scholar
  46. Lombaert E, Guillemand T, Thiams CE, Lawson Handley LJ, Li J, Wang S, Pang H, Goryacheva I, Zakharov IA, Jousselin E, Poland RL, Migeon A, van Lenteren J, de Clercq P, Berkvens N, Jones W, Estoup A (2011) Inferring the origin of populations introduced from a genetically structures native range by approximate Bayesian computation: a case study of the invasive ladybird Harmonia axyridis. Mol Ecol 20:4654–4670CrossRefPubMedGoogle Scholar
  47. Mendel Z, Protasov A, Fisher N, La Salle J (2004) Taxonomy and biology of Leptocybe invasa gen. & sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Aust J Entomol 43:101–113CrossRefGoogle Scholar
  48. Merçot H, Poinsot D (2009) Infection by Wolbachia: from passenger to residents. C R Biol 332:284–297CrossRefPubMedGoogle Scholar
  49. Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208CrossRefGoogle Scholar
  50. Nadel RL, Slippers B, Scholes MC, Lawson SA, Noack AE, Wilcken CF, Bouvet JP, Wingfield MJ (2009) DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Biol Invasions 12:1067–1077CrossRefGoogle Scholar
  51. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  52. Nugnes F, Gebiol M, Monti MM, Gaultieri L, Giorgini M, Wang J, Bernardo U (2015) Genetic diversity of the invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10(5):e0124660CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nyeko P (2005) The cause, incidence and severity of a new gall damage on eucalyptus species at Oruchinga refugee settlement in Mbarara district, Uganda. Ugandan J Agric Sci 11:47–50Google Scholar
  54. Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067CrossRefPubMedGoogle Scholar
  55. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  56. Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20CrossRefGoogle Scholar
  57. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  58. Rabeling C, Kronauer DJC (2013) Thelytokous parthenogenesis in eusocial Hymenoptera. Annu Rev Entomol 58:273–292CrossRefPubMedGoogle Scholar
  59. Rehan SM, Sheffield CS (2011) Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of eastern North America. Zootaxa 2873:35–50Google Scholar
  60. Reitz SR, Trumble JT (2002) Competitive displacement among insects and arachnids. Annu Rev Entomol 47:435–465CrossRefPubMedGoogle Scholar
  61. Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4:889–899CrossRefPubMedGoogle Scholar
  62. Rozas J, Sánchez-DelBarrio JC, Messegeur X, Rozas R (2003) DnaSP, DNA polymorphism nalyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  63. Sangtongpraow B, Charernsom K, Siripatanadilok S (2011) Longevity, fecundity and development time of Eucalypyus Gall Wasp, Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) in Kanchanaburi province, Thailand. Thai J Agric Sci 44:15–163Google Scholar
  64. Schrey NM, Schrey AW, Heist EJ, Reeve JD (2010) Genetic heterogeneity in a cyclical forest pest, the southern pine beetle, Dendroctonus frontalis, is differentiated into east and west groups in the southern unites States. J Insect Sci 11:110Google Scholar
  65. Smith MA, Hallwachs W, Janzen DH, Segura RB (2013) DNA barcoding a collection of ants (Hymenoptera: Formicidae) from Isla del Coco, Costa Rica. Fla Entomol 96:1500–1507CrossRefGoogle Scholar
  66. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241CrossRefPubMedGoogle Scholar
  67. Stouthamer R (1993) The use of sexual versus asexual wasps in biological control. Entomophaga 38:3–6CrossRefGoogle Scholar
  68. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using likelihood, distance, and parsimony methods. Mol Biol Evol 10:2731–2739CrossRefGoogle Scholar
  69. Thu PQ, Dell B, Burgess TI (2009) Susceptibility of 18 eucalypt species to the gall wasp Leptocybe invasa in the nursery and young plantations in Vietnam. ScienceAsia 35:113–117CrossRefGoogle Scholar
  70. Tobin PC, Berec L, Liebhold AM (2011) Exploiting Allee effects for managing biological invasions. Ecol Lett 14:615–624CrossRefPubMedGoogle Scholar
  71. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2001) Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol Ecol 10:2151–2161CrossRefPubMedGoogle Scholar
  72. Turčinavičiene J, Radzevičiute R, Budriene A, Budrys E (2016) Species identification and genetic differentiation of European cavity-nesting wasps (Hymenoptera: Vespidae, Pompilidae, Crabronidae) inferred from DNA barcoding data. Mitochondrial DNA Part A 27:476–482CrossRefGoogle Scholar
  73. Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 - new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefGoogle Scholar
  74. Valade R, Kenis M, Hernandez-Lopez A, Augustin S, Mari Mena N, Magnoux E, Rougerie R, Lakatos F, Roques A, Lopez-Vaamonde C (2009) Mitochondrial and microsatellite DNA markers reveal a Balkan origin for the highly invasive horse-chestnut leaf miner Cameraria ohridella (Lepidoptera, Gracillariidae). Mol Ecol 18:3458–3470CrossRefPubMedGoogle Scholar
  75. Verhoeven KJF, Macel M, Wolfe LM, Bierre A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B 278:2–8CrossRefPubMedGoogle Scholar
  76. Wingfiel MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For 70:139–144CrossRefGoogle Scholar
  77. Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836CrossRefPubMedGoogle Scholar
  78. Yek SH, Slippers B (2014) Biocontrol opportunities to study microevolution in invasive populations. Trends Ecol Evol 29:429–430CrossRefPubMedGoogle Scholar
  79. Zheng XL, Yang ZD, Li J, Xian ZH, Yang J, Liu JY, Su S, Wang XL, Lu W (2014) Rapid identification of both sexes of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae: Tetrastichinae): a morphological perspective. Afr Entomol 22:643–650CrossRefGoogle Scholar
  80. Zhou X, Kjer KM, Morse JC (2007) Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta: Trichoptera) using DNA sequences. J North Am Benthol Soc 26:719–742CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.Department of GeneticsUniversity of PretoriaPretoriaSouth Africa
  3. 3.Forest Industries Research CentreThe University of the Sunshine CoastQueenslandAustralia
  4. 4.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations