Advertisement

Biological Invasions

, Volume 20, Issue 8, pp 2245–2256 | Cite as

Effects of nutrient enrichment and grazing by an invasive filter feeder on phytoplankton biomass in a South West Atlantic coastal lagoon

  • Carlos Martin BruschettiEmail author
  • Mariana Addino
  • Tomas Luppi
  • Oscar Iribarne
Original Paper

Abstract

Invasive species can exert strong effects on structure and function of marine ecosystem. In estuaries, nutrient enhancement due to anthropogenic activities can increase microalgal biomass but invading filter-feeders can eventually regulate their abundance. This is what we hypothesized that is happening in a SW Atlantic coastal lagoon (Mar Chiquita, 37°40′S, 57°23′W, Argentina) invaded by the polychaete Ficopomatus enigmaticus. Here, we experimentally evaluated this hypothesis in a mesocosms experiment. Four treatments were performed: (T1) with nutrients (NO3, PO4 and NH4), (T2) with reefs and nutrients, (T3) with reefs, and (T4) without reefs or nutrients. Water samples were obtained to determine in vivo chlorophyll a (Chla) and nutrients concentration. Additionally, to evaluate the trophic position and particle selectivity by the polychaete, analysis of stable isotopes of particulate organic matter (POM) of the water and individuals were performed. Stable isotopes analysis showed that the main resource used by F. enigmaticus was the fraction of POM between 62 and 250 µm, showing particle selectivity and suggesting that the reefs have the potential to promote shifts in size, composition and biomass of local food source. Mesocosms experiments showed that nutrient supply increased the Chla concentration, but when reefs were added, the Chla decreased. Thus, nutrients increased the phytoplankton biomass but grazing by the reefs counteracted these increments. This indicates that an invader such as F. enigmaticus might modulate an anthropogenic impact via suspension feeding, and therefore its role in mitigate the consequences of eutrophication may be highly important.

Keywords

Filter-feeders Nutrients Top-down and bottom-up effect Invasive reef-building polychaete Grazing Eutrophication 

Notes

Acknowledgements

We thank J. Alberti for helping with the statistical analysis. This project was supported by grants from the Universidad Nacional de Mar del Plata and CONICET (Argentina PIP-424), ANPCyT (Argentina PICT-3823), to O. Iribarne. C.M. Bruschetti and M. Addino were supported by Doctoral scholarships from CONICET (Argentina).

Supplementary material

10530_2018_1699_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 82 kb)

References

  1. Addino M (2014) Efecto de características físicas del ambiente e interacciones biológicas en los patrones de distribución e historia de vida de la almeja navaja Tagelus plebeius. Tesis de Doctorado Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y NaturalesGoogle Scholar
  2. Alpine A, Cloern J (1992) Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnol Oceanogr 37:946–955CrossRefGoogle Scholar
  3. Bazterrica MC, Alvarez MF, Bruschetti CM, Hidalgo FJ, Fanjul ME, Iribarne O, Botto F (2013) Factors controlling macroalgae assemblages in a Southwest Atlantic coastal lagoon modified by an invading reef forming polychaete. J Exp Mar Biol Ecol 443:169–177CrossRefGoogle Scholar
  4. Booman GC, Calandroni M, Laterra P et al (2012) Areal changes of lentic water bodies within an agricultural basin of the Argentinean Pampas. Disentangling land management from climatic causes. Environ Manag 50:1058–1067CrossRefGoogle Scholar
  5. Botto F, Valiela I, Iribarne O, Martinetto P, Alberti J (2005) Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Mar Ecol Prog Ser 293:155–164CrossRefGoogle Scholar
  6. Bruschetti CM, Fanjul E, Rosenthal A, Luppi TA, Iribarne O (2008) Grazing effect of the invasive reef-forming polychaete Ficopomatus enigmaticus (Fauvel) on phytoplankton biomass in a SW Atlantic coastal lagoon. J Exp Mar Biol Ecol 354:212–219CrossRefGoogle Scholar
  7. Bruschetti M, Bazterrica C, Luppi T, Iribarne O (2009) An invasive intertidal reef-forming polychaete affect habitat use and feeding behavior of migratory and locals birds in a SW Atlantic coastal lagoon. J Exp Mar Biol Ecol 375:76–83CrossRefGoogle Scholar
  8. Bruschetti M, Bazterrica C, Fanjul ME, Luppi T, Iribarne O (2011) Effect of biodeposition of an invasive polychaete on organic matter content and productivity of the sediment in a coastal lagoon. J Sea Res 66:20–28CrossRefGoogle Scholar
  9. Burkepile DE, Hay ME (2006) Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 87:3128–3139CrossRefPubMedGoogle Scholar
  10. Capps KA, Ulseth A, Flecker AS (2015) Quantifying the top-down and bottom-up effects of a non-native grazer in freshwaters. Biol Invasions 17:1253–1266CrossRefGoogle Scholar
  11. Carlton JT (2000) Global change and biological invasions in the oceans. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington DC, pp 31–53Google Scholar
  12. Cifuentes LA, Sharp JH, Fogel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnol Ocean 33:1102–1115CrossRefGoogle Scholar
  13. Cloern J (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  14. Cucherousset J, Blanchet S, Olden JD (2012) Non-native species promote trophic dispersion of food webs. Front Ecol Environ 10:406–408CrossRefGoogle Scholar
  15. Davies BRB, Stuart V, De Villiers M (1989) The filtration activity of a serpulid polychaete population (Ficopomatus enigmaticus (Fauvel)) and its effects on water quality in a coastal marina. Estuarine Coast Shelf Sci 29:613–620CrossRefGoogle Scholar
  16. De Marco SG, Beltrame MO, Freije RH, Marcovecchio JE (2005) Phytoplankton dynamic in Mar Chiquita coastal lagoon (Argentina), and its relationship with potential nutrient sources. J Coast Res 214:818–825CrossRefGoogle Scholar
  17. Dubois S, Barillé L, Cognie B (2009) Feeding response of the polychaete Sabellaria alveolata (Sabellariidae) to changes in seston concentration. J Exp Mar Bio Ecol 376:94–101CrossRefGoogle Scholar
  18. Fasano JL, Hernández MA, Isla FI, Schnack EJ (1982) Aspectos evolutivos y ambientales de la laguna Mar Chiquita (Provincia de Buenos Aires, Argentina). Oceanol Acta 4:285–292Google Scholar
  19. Fry B, Sherr EB (1984) 13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27:13–47Google Scholar
  20. Gottlieb SSJ, Schweighofer MEM (1996) Oysters and the Chesapeake Bay ecosystem: a case for exotic species introduction to improve environmental quality? Estuaries Coasts 19:639–650CrossRefGoogle Scholar
  21. Grosholz ED, Levin LA, Tyler AC, Neira C (2009) Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific estuaries. In: Silliman BR, Grosholz E, Bertness MD (eds) Human impacts on salt marshes: a global perspective. University of California Press, CaliforniaGoogle Scholar
  22. Gutiérrez JL, Jones CG, Sousa R (2014) Toward an integrated ecosystem perspective of invasive species impacts. Acta Oecol 54:131–138CrossRefGoogle Scholar
  23. Guy-Haim T, Lyons DA, Kotta J et al (2018) Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: a global review and meta-analysis. Glob Change Biol 24:906–924CrossRefGoogle Scholar
  24. Heck KL, Pennock JRJ, Valentine JFJ et al (2000) Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment. Limnol Oceanogr 45:1041–1057CrossRefGoogle Scholar
  25. Heiman KW, Micheli F (2010) Non-native ecosystem engineer alters estuarine communities. Integr Comp Biol 50:226–236CrossRefPubMedGoogle Scholar
  26. Heiman K, Vidargas N, Micheli F (2008) Non-native habitat as home for non-native species: comparison of communities associated with invasive tubeworm and native oyster reefs. Aquat Biol 2:47–56CrossRefGoogle Scholar
  27. Herman PMJ, Scholten H (1990) Can suspension-feeders stabilize estuarine ecosystems? In: Barnes M, Gibson R (eds) Trophic relationships in the marine environment. Aberdeen University Press, Aberdeen, pp 104–116Google Scholar
  28. Isla FI (1997) Seasonal behaviour of Mar Chiquita tidal inlet in relation to adjacent beaches, Argentina. J Coast Res 13:1221–1232Google Scholar
  29. Lanfredi NW, Balestrini CF, Mazio CA, Schmidt SA (1987) Tidal sandbanks in Mar Chiquita coastal lagoon, Argentina. J Coast Res 3:515–520Google Scholar
  30. Mack MCM, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. TREE 13:195–198PubMedGoogle Scholar
  31. Marcovecchio JE, Freije H, De Marco S, Gavio A, Ferrer L, Andrade S, Beltrame O, Asteasuain R (2005) Seasonality of hydrographic variables in a coastal lagoon: Mar Chiquita, Argentina. Aquat Conserv Mar Freshw Ecosyst 16:335–347CrossRefGoogle Scholar
  32. Martinetto P, Teichberg M, Valiela I, Montemayor D, Iribarne O (2011) Top-down and bottom-up regulations in a high nutrient-high herbivory coastal ecosystem. Mar Ecol Prog Ser 432:69–82CrossRefGoogle Scholar
  33. Micheli F (1999) Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285:1396–1398CrossRefPubMedGoogle Scholar
  34. Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480CrossRefPubMedGoogle Scholar
  35. Nixon SW (2012) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219CrossRefGoogle Scholar
  36. Pan J, Marcoval MA (2014) Top-Down effects of an exotic serpulid polychaete on natural plankton assemblage of estuarine and brackish systems in the SW Atlantic. J Coast Res 298:1226–1235CrossRefGoogle Scholar
  37. Parker IM, Simberloff D, Lonsdale WM et al (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19CrossRefGoogle Scholar
  38. Pérez-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475–476:359–369CrossRefGoogle Scholar
  39. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  40. Peterson BJ, Howarth RW, Garitt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227:1361–1363CrossRefPubMedGoogle Scholar
  41. Pinheiro J, Bates D (2000) Mixed effects models in S and S-Plus. Springer, New YorkCrossRefGoogle Scholar
  42. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) NLME: linear and nonlinear mixed effects models. R package version 3.1-117, R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  44. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  45. Riley RH, Townsend CR, Raffaelli DA, Flecker AS (2004) Sources and effects of subsidies along the stream-estuary continuum. In: Polis GA, Power ME, Huxel GR (eds) Food webs at the landscape level. Chicago University Press, Chicago, pp 241–262Google Scholar
  46. Schwindt E, Iribarne OO (2000) Settlement sites, survival and effects on benthos of an introduced reef-building polychaete in a SW Atlantic coastal lagoon. Bull Mar Sci 67:73–82Google Scholar
  47. Schwindt E, Bortolus A, Iribarne OO (2001) Invasion of a reef-builder polychaete: direct and indirect impacts on the native benthic community structure. Biol Invasions 3:137–149CrossRefGoogle Scholar
  48. Schwindt E, Iribarne O, Isla I (2004) Physical effects of an invading reef-building polychaete on an Argentinean estuarine environment. Estuarine Coast Shelf Sci 59:109–120CrossRefGoogle Scholar
  49. Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801CrossRefGoogle Scholar
  50. Soriano A, Leon RJC, Sala OE, Lavado RS, Deregibus VA et al (1992) Rio de la Plata grasslands. In: Coupland RT (ed) Ecosystems of the world 8a. Natural grasslands. Introduction and western hemisphere. Elsevier, New York, pp 367–407Google Scholar
  51. Sousa R, Novais A, Costa R, Strayer DL (2014) Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735:233–251CrossRefGoogle Scholar
  52. Stock BC, Semmens BX (2013) MixSIAR GUI User manual, version 3.1.  https://doi.org/10.5281/zenodo.47719. https://github.com/brianstock/MixSIAR
  53. Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Fresh Biol 55:152–174CrossRefGoogle Scholar
  54. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Board Can 167:1–311Google Scholar
  55. Teichberg M, Fox SE, Olsen YS, Valiela I, Martinetto P et al (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Chang Biol 16:2624–2637PubMedCentralGoogle Scholar
  56. Valiela I (2006) Global coastal change. Wiley, Oxford, p 376Google Scholar
  57. Valiela I, Tomasky G, Hauxwell J, Cole ML, Cebrián J, Kroeger K (2000) Operationalizing sustainability: management and risk assessment of land-derived nitrogen loads to estuaries. Ecol Appl 10:1006–1023CrossRefGoogle Scholar
  58. Valiela I, Rutecki D, Fox S (2004) Salt marshes: biological controls of food webs in a diminishing environment. J Exp Mar Biol Ecol 300:131–159CrossRefGoogle Scholar
  59. Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13CrossRefGoogle Scholar
  60. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876CrossRefGoogle Scholar
  61. Worm B, Reusch TBH, Lotze HK (2000) In situ nutrient enrichment: methods for marine benthic ecology. Int Rev Hydrobiol 85:359–375CrossRefGoogle Scholar
  62. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effect models and extensions in ecology with R. Springer, Berlin, p 524CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Martin Bruschetti
    • 1
    • 2
    Email author
  • Mariana Addino
    • 1
    • 2
  • Tomas Luppi
    • 1
    • 2
  • Oscar Iribarne
    • 1
    • 2
  1. 1.Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET, CC 1260 Correo CentralUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations