Biological Invasions

, Volume 20, Issue 8, pp 2033–2046 | Cite as

On the origin and genetic variability of the two invasive biotypes of Chromolaena odorata

  • Xiaona Shao
  • Qiaoming Li
  • Luxiang Lin
  • Tianhua He
Original Paper


Chromolaena odorata (L.) R. M. King and H. Robinson (Asteraceae), originally from the Neotropics, has become a serious weed in the humid tropics and subtropics of Southeast Asia, Africa and Pacific Islands. In its introduced distributions, C. odorata has been recognised as two biotypes, the Asian/West African (AWA) biotype and South African (SA) biotype, with independent distribution, morphology and ecological characters. To characterise the genetic variability and identify the likely source regions in the native distributions of the two biotypes, we carried out an extensive phylogeographic study using chloroplast and nuclear DNA sequences and microsatellite DNA markers. The analysis of both DNA sequences and nuclear markers showed that native populations possessed high genetic diversity, while both the AWA and SA biotypes in invaded regions appeared to have low genetic diversity. The AWA and SA biotypes were genetically distinct. Strong competitive ability and environmental adaptability may have facilitated the invasion AWA and SA biotypes in its respective invasive regions. We conclude that the source of AWA biotype may be Trinidad and Tobago, while the SA biotype was from Cuba and Jamaica. For a better outcome of biocontrol, the potential biological control agents for the two biotypes should be collected from these native regions, respectively.


Chromolaena odorata Invasion Biotype Genetic diversity Source location Biological control 



The authors thank Iain D. Paterson for providing genetic specimen, and thank Costas Zachariades, Nontembeko Dube, Osariyekemwen O. Uyi, Yanqiong Peng, Jianli Zhao and Zhilong Liu for their assistance with field sampling. Xiangqin Yu, Xiuyan Feng and Meng Wang are thanked for their help in data analyses. This research was supported by National Science Foundation of China (No. 31370267).

Supplementary material

10530_2018_1677_MOESM1_ESM.pdf (421 kb)
Supplementary material 1 (PDF 421 kb)
10530_2018_1677_MOESM2_ESM.pdf (286 kb)
Supplementary material 2 (PDF 286 kb)
10530_2018_1677_MOESM3_ESM.pdf (606 kb)
Supplementary material 3 (PDF 606 kb)
10530_2018_1677_MOESM4_ESM.pdf (443 kb)
Supplementary material 4 (PDF 443 kb)


  1. Atagana HI (2011) The potential of Chromolaena odorata (L.) to decontaminate used engine oil impacted soil under greenhouse conditions. Int J Phytorem 13:627–641CrossRefGoogle Scholar
  2. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  3. Barker NP, Von Senger I, Howis S, Zachariades C, Ripley BS (2005) Plant phylogeography based on rDNA ITS sequence data: two examples from the Asteraceae. In: Bakker FT, Chatrou LW, Gravendeel B, Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process, Chapt 11. ARG Gantner Verlag, Ruggell, pp 217–244Google Scholar
  4. Biller A, Boppré M, Witte L, Hartmann T (1994) Pyrrolizidine alkaloids in Chromolaena odorata. Chemical and chemoecological aspects. Phytochemistry 35:615–619CrossRefGoogle Scholar
  5. Biswas K (1934) Some foreign weeds and their distribution in India and Burma. Indian Forester 60:861–865Google Scholar
  6. Clarke CB (1876) Compositae indicae descriptae et secus genera Benthamii ordinatae. Thacker, Spink, Calcutta. CrossRefGoogle Scholar
  7. Codilla LT, Metillo EB (2012) Biotype of the invasive plant species Chromolaena odorata (Asteraceae: Eupatoriae) in the Zamboanga Peninsula, the Philippines. Philipp J Syst Biol 5:28–42Google Scholar
  8. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Resour 3:167–169CrossRefGoogle Scholar
  9. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefPubMedGoogle Scholar
  10. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  11. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  12. Excoffier L, Laval G, Schneider S (2007) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47PubMedPubMedCentralGoogle Scholar
  13. Feng X, Zheng Y, Gong X (2016) Middle-Upper Pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): evidence from DNA sequences and microsatellite markers. Sci Rep 6:27368CrossRefPubMedPubMedCentralGoogle Scholar
  14. Forsman A (2014) Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proc Natl Acad Sci USA 111:302–307CrossRefPubMedGoogle Scholar
  15. Gautier L (1992) Taxonomy and distribution of a tropical weed: Chromolaena odorata (L.) R. King & H. Robinson. Candollea 47:645–662Google Scholar
  16. Geng YP, Pan XY, Xu CY et al (2007) Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol Invasions 9:245–256CrossRefGoogle Scholar
  17. Goodall JM, Erasmus DJ (1996) Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa. Agr Ecosyst Environ 56:151–164CrossRefGoogle Scholar
  18. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and xation indices. Version 2.9.3.
  19. Ivens GW (1974) The problem of Eupatorium odoratum L. in Nigeria. Int J Pest Manag 20:76–82Google Scholar
  20. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kluge RL (1991) Biological control of triffid weed, Chromolaena odorata (Asteraceae), in South Africa. Agr Ecosyst Environ 37:193–197CrossRefGoogle Scholar
  22. Kluge RL (1994) Ant predation and the establishment of Pareuchaetes pseudoinsulata Rego Barros (Lepidoptera: Arctiidae) for biological control of triffid weed, Chromolaena odorata (L.) King and Robinson, in South Africa. Afr Entomol 2:71–72Google Scholar
  23. Kovach WL (1999) MVSP—a multivariate statistical package for Windows, ver. 3.1. Kovach Computing Services, PentraethGoogle Scholar
  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lai PY, Muniappan R, Wang TH, Wu CJ (2006) Distribution of Chromolaena odorata and its biological control in Taiwan. Mccarthy 38:119–122Google Scholar
  26. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  27. M’Boob SS (1991) Preliminary results of a survey and assessment of Chromolaena odorata (Siam Weed) in Africa. Biotrop Spec Publ 44:51–55Google Scholar
  28. Majumder J, Bhattacharjee PP, Datta BK, Agarwala BK (2014) Ethno-medicinal plants used by Bengali communities in Tripura, northeast India. J For Res 25:713–716CrossRefGoogle Scholar
  29. McFadyen REC (1989) Siam weed: a new threat to Australia’s north. Plant Prot Q 4:3–7Google Scholar
  30. McFadyen REC (1993) National report from Australia and the Pacific. In: Proceedings of the third international workshop on biological control and management of Chromolaena odorata, Abidjan, Ivory Coast, pp 39–44Google Scholar
  31. McFadyen REC (2002) Chromolaena in Asia and the Pacific: spread continues but control prospects improve. In: Zachariades C MR, Strathie LW (eds) Proceeding of the fifth international workshop on biological control and management of Chromolaena odorata, Durban, South Africa, 2000. ARC-PPRI, pp 13–18Google Scholar
  32. Mcfadyen RC, Skarratt B (1996) Potential distribution of Chromolaena odorata (Siam weed) in Australia, Africa and Oceania. Agr Ecosyst Environ 59:89–96CrossRefGoogle Scholar
  33. Mcgibbon J (1858) Catalogue of problem plants in the botanic garden, Cape Town, Cape of Good HopeGoogle Scholar
  34. Meimberg H, Hammond JI, Jorgensen CM, Park TW, Gerlach JD, Rice KJ, McKay JK (2005) Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol Invasions 8:1355–1366CrossRefGoogle Scholar
  35. Möller M, Cronk QCB (1997) Origin and relationships of Saintpaulia based on ribosomal DNA internal transcribed spacer sequences. Am J Bot 84:956–965CrossRefPubMedGoogle Scholar
  36. Muniappan R, Bamba J (2000) Biological control of Chromolaena odorata: successes and failures. In: Spencer NR (ed) Proceedings of the tenth international symposium on biological control of weeds, Montana State University, Bozeman, Montana, USA, 1999, pp 81–85Google Scholar
  37. Muniappan R, Reddy GVP, Lai PY (2005) Distribution and biological control of Chromolaena odorata. In: Inderjit I (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag, Basel, pp 223–233CrossRefGoogle Scholar
  38. Norbu N (2004) Invasion Success of Chromolaena odorata in the Terai of Nepal. Unpublished MSc. thesisGoogle Scholar
  39. Omokhua AG, McGaw LJ, Finnie JF, Van Staden J (2016) Chromolaena odorata (L.) R.M. King & H. Rob. (Asteraceae) in sub-Saharan Africa: a synthesis and review of its medicinal potential. J Ethnopharmacol 183:112–122CrossRefPubMedGoogle Scholar
  40. Pandith H, Pithayanukul P, Gritsanapan W (2014) Development of hemostatic gel preparations from Chromolaena odorata leaf extract. Planta Med. CrossRefGoogle Scholar
  41. Paterson ID, Zachariades C (2013) ISSRs indicate that Chromolaena odorata invading southern Africa originates in Jamaica or Cuba. Biol Control 66:132–139CrossRefGoogle Scholar
  42. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295CrossRefGoogle Scholar
  43. Perdereau E, Bagneres AG, Bankhead-Dronnet S, Dupont S, Zimmermann M, Vargo EL, Dedeine F (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119CrossRefPubMedGoogle Scholar
  44. Pickworth G (1976) Triftid weed (Euputorium odoratum)—an address to the Lower Tugela Farmers Soil Conservation CommitteeGoogle Scholar
  45. Pisutthanan N, Liawruangrath B, Liawruangrath S, Bremner JB (2006) A new flavonoid from Chromolaena odorata. Nat Prod Res 20:1192–1198CrossRefPubMedGoogle Scholar
  46. Poulin J, Weller SG, Sakai AK (2005) Genetic diversity does not affect the invasiveness of fountain grass (Pennisetum setaceum) in Arizona, California and Hawaii. Divers Distrib 11:241–247CrossRefGoogle Scholar
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  48. Rao VP (1968) Distribution of an Introduced Weed Linn. (Compositae) in Asia and Africa and possibilities of its biological control. Pest Artic News Summ 14:277–281Google Scholar
  49. Ren MX, Zhang QG, Zhang DY (2005) Random amplified polymorphic DNA markers reveal low genetic variation and a single dominant genotype in Eichhornia crassipes populations throughout China. Weed Res 45:236–244CrossRefGoogle Scholar
  50. Rusdy M (2016) The spread, impact and control of Chromolaena odorata (L.) R. M. King and H. Robinson in Grassland Area. J Agric Ecol Res Int 5:1–8Google Scholar
  51. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefPubMedGoogle Scholar
  52. Schaal BA, Gaskin JF, Caicedo AL (2003) The Wilhelmine W. Key 2002 Invitational Lecture. Phylogeography, haplotype trees, and invasive plant species. J Hered 94:197–204CrossRefPubMedGoogle Scholar
  53. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (2010) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474CrossRefGoogle Scholar
  54. Schmidt GJ, Schilling EE (2000) Phylogeny and biogeography of Eupatorium (Asteraceae: Eupatorieae) based on nuclear ITS sequence data. Am J Bot 87:716–726CrossRefPubMedGoogle Scholar
  55. Scott LJ, Lange Corinna L, Graham Glenn C, Yeates DK (1998) Genetic diversity and origin of siam weed (Chromolaena odorata) in Australia. Weed Technol 12:27–31CrossRefGoogle Scholar
  56. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedPubMedCentralGoogle Scholar
  58. Suriyavathana M, Parameswari G, Shiyan SP (2012) Biochemical and antimicrobial study of Boerhavia erecta and Chromolaena odorata (L.) King & Robinson. Int J Pharm Sci Res 3:465Google Scholar
  59. Tate JA (2002) Systematics and evolution of Tarasa (Malvaceae): an enigmatic Andean polyploid genus. Dissertation, The University of TexasGoogle Scholar
  60. Uyi O, Igbinosa IB (2013) The status of Chromolaena odorata and its biocontrol in West Africa. In: Zachariades C, Strathie LW, Day MD, Muniappan R (eds) Proceedings of the eighth international workshop on biological control and management of Chromolaena odorata and other Eupatorieae, Nairobi, Kenya, 2010. ARC-PPRI, Pretoria, pp 86–98Google Scholar
  61. von Senger I, Barker NP, Zachariades C, Zachariades C, Muniappan R, Strathie LW (2002) Preliminary phylogeography of Chromolaena odorata: finding the origin of a South African weed. In: Zachariades C, Muniappan R, Strathie LW (eds) Proceeding of the fifth international workshop on biological control and management of Chromolaena odorata, Durban, South Africa, 2000. ARC-PPRI, pp 90–99Google Scholar
  62. Vos WT (1989) The status and origin of Chromolaena odorata (L.) R. M. King and H. Robinson in Natal. Honours thesis, University of Natal, PietermaritzburgGoogle Scholar
  63. Wang XY, Shen DW, Jiao J, Xu NN, Yu S, Zhou XF, Shi MM, Chen XY (2012) Genotypic diversity enhances invasive ability of Spartina alterniflora. Mol Ecol 21:2542–2551CrossRefPubMedGoogle Scholar
  64. Ward SM, Gaskin JF, Wilson LM (2009) Ecological genetics of plant invasion: what do we know? Invasive Plant Sci Manag 1:98–109CrossRefGoogle Scholar
  65. Weir BS, Cockerham CC (1984) Estimating f-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  66. Wright S (1950) The genetical structure of populations. Nature 166:247–249CrossRefPubMedGoogle Scholar
  67. Wu SH, Changfu H, Rejmánek M (2004) Catalogue of the naturalized flora of Taiwan. Taiwania 49:16–31Google Scholar
  68. Ye WH, Mu HP, Cao HL, Ge XJ (2004) Genetic structure of the invasive Chromolaena odorata in China. Weed Res 44:129–135CrossRefGoogle Scholar
  69. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, EdmontonGoogle Scholar
  70. Yu XQ, Li QM (2011) Isolation and characterization of microsatellite markers for a worldwide invasive weed, Chromolaena odorata (Asteraceae). Am J Bot 98:259–261CrossRefGoogle Scholar
  71. Yu XQ, Feng YL, Li QM (2010) Review of research advances and prospects of invasive Chromolaena odorata. Chin J Plant Ecol 34:591–600Google Scholar
  72. Yu X, He T, Zhao J, Li Q (2014) Invasion genetics of Chromolaena odorata (Asteraceae): extremely low diversity across Asia. Biol Invasions 16:2351–2366CrossRefGoogle Scholar
  73. Zachariades C (2003) Biotype matching of Chromolaena for more successful biological control. In: Proceedings of the South Aftrican Sugarcane Technologists Association, vol 7, 216–219Google Scholar
  74. Zachariades C, Strathie-Korrûbel LW, Kluge RL (1999) The South African programme on the biological control of Chromolaena odorata (L.) King & Robinson (Asteraceae) using insects. Afr Entomol Mem 1:89–102Google Scholar
  75. Zachariades C, von Senger I, Barker NP (2004) Evidence for a northern Caribbean origin for the southern African biotype of Chromolaena odorata. In: Day MD, McFadyen RE (eds) Proceedings of the 6th international workshop on biological control and management of Chromolaena, Cairns, Australia, 2003. ACIAR technical reports, pp 25–27Google Scholar
  76. Zachariades C, Day MD, Muniappan R, Reddy GVP (2009) Chromolaena odorata (L.) King and Robinson (Asteraceae). In: Muniappan R, Reddy GVP, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, CambridgeGoogle Scholar
  77. Zachariades C, Strathie LW, Retief E, Dube N (2011) Progress towards the biological control of Chromolaena odorata (L.) R.M. King & H. Rob. (Asteraceae) in South Africa. Afr Entomol 19:282–302CrossRefGoogle Scholar
  78. Zachariades C, Uyi O, Dube N, Strathie LW, Muir D, Conlong DE, Assefa Y (2016) Biological control of Chromolaena odorata: pareuchaetes insulata spreads its wings. In: Proceedings of the South African sugarcane technologists association, vol 89, pp 291–306Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Southeast Asia Biodiversity Research InstituteChinese Academy of SciencesMenglun, MenglaChina
  4. 4.School of Molecular and Life SciencesCurtin UniversityPerthAustralia

Personalised recommendations