Advertisement

Biological Invasions

, Volume 20, Issue 6, pp 1567–1575 | Cite as

Early Acacia invasion in a sandy ecosystem enables shading mediated by soil, leaf nitrogen and facilitation

  • João Augusto Alves Meira-NetoEmail author
  • Maria Carolina Nunes Alves da Silva
  • Gláucia Soares Tolentino
  • Markus Gastauer
  • Tillmann Buttschardt
  • Florian Ulm
  • Cristina Máguas
Original Paper

Abstract

Australian species of the genus Acacia are amongst the most invasive trees. As nitrogen fixers, they are able to invade oligotrophic ecosystems and alter ecosystem functioning to their benefit. We aimed to answer three questions: How does early Acacia invasion influence nitrogen and light in a sandy savanna? How does early Acacia invasion impact biodiversity? Does early invasion alter ecosystem functioning towards the dominance of Acacia? We analyzed (using generalized linear mixed models and richness estimators) paired plots focused on plants of Acacia mangium (Fabaceae) and plants of Marcetia taxifolia (Melastomataceae) by taking hemispherical photos and sampling plants, leaves and soil for measurements of light, richness, leaf nitrogen, leaf δ15N, soil nitrogen and soil coarse sand. The results suggest that early Acacia invasion alters the control of soil and of leaf nitrogen and increases shading, enabling a much wider range of light variation. The δ15N results suggest that the nitrogen taken up by Acacia is transferred to neighboring plants and influences the light environment, suggesting facilitation. The enrichment of plant species observed during early Acacia invasion is consistent with the wider range of light variation, but the forecasted leaf nitrogen conditions during the established phase of Acacia invasion might cause loss of light-demanding species because of increased shading. If early Acacia invasion turns into an established phase with highly increased shading, Acacia seedlings might be favored and ecosystem functioning might change towards its dominance.

Keywords

Biological invasion Assembly rules Ecosystem functioning Niche theory Nitrogen fixing Acacia Plant diversity δ15N 

Notes

Acknowledgements

The authors thank FAPEMIG, CAPES, CNPq, and PIRSES (PIRSES-GA-2010-269206) for providing grants and scholarships for the INSPECTED.NET project. The authors also thank Rodrigo Nascimento Maia for helping in the stable isotope analyses; JAAMN holds a CNPq productivity fellowship (307591/2016-6).

References

  1. Austin AT, Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–529.  https://doi.org/10.1007/s004420050405 CrossRefPubMedGoogle Scholar
  2. Bates D, Maechler M, Bolker B et al (2014) lme4: linear mixed-effects models using Eigen and S4, p 117Google Scholar
  3. Burnham KP, Anderson DR, Huyvaert KP (2010) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35.  https://doi.org/10.1007/s00265-010-1029-6 CrossRefGoogle Scholar
  4. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715.  https://doi.org/10.1038/nature06503 CrossRefPubMedGoogle Scholar
  5. Colwell RK (2013) EstimateS: biodiversity estimation of species richness and shared species from samples. http://viceroy.eeb.uconn.edu/estimates/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm. Accessed 18 May 2016
  6. Colwell RK, Chao A, Gotelli NJ et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21.  https://doi.org/10.1093/jpe/rtr044 CrossRefGoogle Scholar
  7. Craine JM, Brookshire ENJ, Cramer MD et al (2015) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396:1–26.  https://doi.org/10.1007/s11104-015-2542-1 CrossRefGoogle Scholar
  8. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329.  https://doi.org/10.2980/i1195-6860-12-3-316.1 CrossRefGoogle Scholar
  9. Dickson TL, Foster BL (2011) Fertilization decreases plant biodiversity even when light is not limiting. Ecol Lett 14:380–388.  https://doi.org/10.1111/j.1461-0248.2011.01599.x CrossRefPubMedGoogle Scholar
  10. Drenovsky RE, Grewell BJ, D’Antonio CM et al (2012) A functional trait perspective on plant invasion. Ann Bot.  https://doi.org/10.1093/aob/mcs100 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Egerton JJG, Banks JCG, Gibson A et al (2000) Facilitation of seedling establishment: reduction in irradiance enhances winter growth of Eucalyptus pauciflora. Ecology 81:1437–1449.  https://doi.org/10.1890/0012-9658(2000)081[1437:FOSERI]2.0.CO;2 CrossRefGoogle Scholar
  12. EMBRAPA (1997) Manual de métodos de análise de solo. Centro Nacional de Pesquisa de Solo, Rio de JaneiroGoogle Scholar
  13. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA): imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. Users Manual and Program Documentation, Version 2.0. Simon Fraser University and Institute of Ecosystem Studies, Burnaby, British ColumbiaGoogle Scholar
  14. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081.  https://doi.org/10.1038/nature05719 CrossRefPubMedGoogle Scholar
  15. Garten CT (1992) Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. Int J Environ Anal Chem 47:33–45.  https://doi.org/10.1080/03067319208027017 CrossRefGoogle Scholar
  16. Geerts S, Moodley D, Gaertner M et al (2013) The absence of fire can cause a lag phase: the invasion dynamics of Banksia ericifolia (Proteaceae). Austral Ecol 38:931–941.  https://doi.org/10.1111/aec.12035 CrossRefGoogle Scholar
  17. Guisan A, Petitpierre B, Broennimann O et al (2014) Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29:260–269.  https://doi.org/10.1016/j.tree.2014.02.009 CrossRefPubMedGoogle Scholar
  18. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638.  https://doi.org/10.1126/science.1169640 CrossRefPubMedGoogle Scholar
  19. Hobbie EA, Hobbie JE (2008) Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11:815–830.  https://doi.org/10.1007/s10021-008-9159-7 CrossRefGoogle Scholar
  20. Houlton BZ, Bai E (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc Natl Acad Sci 106:21713–21716.  https://doi.org/10.1073/pnas.0912111106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lazzaro L, Giuliani C, Fabiani A et al (2014) Soil and plant changing after invasion: the case of Acacia dealbata in a Mediterranean ecosystem. Sci Total Environ 497–498:491–498.  https://doi.org/10.1016/j.scitotenv.2014.08.014 CrossRefPubMedGoogle Scholar
  22. Le Maitre DC, Gaertner M, Marchante E et al (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17:1015–1029.  https://doi.org/10.1111/j.1472-4642.2011.00816.x CrossRefGoogle Scholar
  23. Lorenzo P, Rodríguez-Echeverría S, González L, Freitas H (2010) Effect of invasive Acacia dealbata link on soil microorganisms as determined by PCR-DGGE. Appl Soil Ecol 44:245–251.  https://doi.org/10.1016/j.apsoil.2010.01.001 CrossRefGoogle Scholar
  24. Marchante E, Kjøller A, Struwe S, Freitas H (2008) Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl Soil Ecol 40:210–217.  https://doi.org/10.1016/j.apsoil.2008.04.004 CrossRefGoogle Scholar
  25. Meira-Neto JAA, de Souza AL, de Lana JM, Valente GE (2005) Composição florística, espectro biológico e fitofisionomia da vegetação de muçununga nos municípios de Caravelas e Mucuri, Bahia. Rev Árvore 29:139–150.  https://doi.org/10.1590/S0100-67622005000100015 CrossRefGoogle Scholar
  26. Meira-Neto JAA, Tolentino GS, da Silva MCNA et al (2017) Functional antagonism between nitrogen-fixing leguminous trees and calcicole-drought-tolerant trees in the Cerrado. Acta Bot Bras 31:11–18.  https://doi.org/10.1590/0102-33062016abb0380 CrossRefGoogle Scholar
  27. Peperkorn R, Werner C, Beyschlag W (2005) Phenotypic plasticity of an invasive acacia versus two native Mediterranean species. Funct Plant Biol 32:933–944CrossRefGoogle Scholar
  28. Porter EM, Bowman WD, Clark CM et al (2012) Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry 114:93–120.  https://doi.org/10.1007/s10533-012-9803-3 CrossRefGoogle Scholar
  29. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  30. Rascher KG, Große-Stoltenberg A, Máguas C et al (2011a) Acacia longifolia invasion impacts vegetation structure and regeneration dynamics in open dunes and pine forests. Biol Invasions 13:1099–1113.  https://doi.org/10.1007/s10530-011-9949-2 CrossRefGoogle Scholar
  31. Rascher KG, Große-Stoltenberg A, Máguas C, Werner C (2011b) Understory invasion by Acacia longifolia Alters the water balance and carbon gain of a Mediterranean pine forest. Ecosystems 14:904–919.  https://doi.org/10.1007/s10021-011-9453-7 CrossRefGoogle Scholar
  32. Rascher KG, Hellmann C, Máguas C, Werner C (2012) Community scale 15N isoscapes: tracing the spatial impact of an exotic N2-fixing invader. Ecol Lett 15:484–491.  https://doi.org/10.1111/j.1461-0248.2012.01761.x CrossRefPubMedGoogle Scholar
  33. Raveh A, Avnimelech Y (1979) Total nitrogen analysis in water, soil and plant material with persulphate oxidation. Water Res 13:911–912.  https://doi.org/10.1016/0043-1354(79)90227-6 CrossRefGoogle Scholar
  34. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809.  https://doi.org/10.1111/j.1472-4642.2011.00782.x CrossRefGoogle Scholar
  35. Rodríguez-Echeverría S, Afonso C, Correia M et al (2013) The effect of soil legacy on competition and invasion by Acacia dealbata link. Plant Ecol 214:1139–1146.  https://doi.org/10.1007/s11258-013-0238-2 CrossRefGoogle Scholar
  36. Rouget M, Robertson MP, Wilson JRU et al (2016) Invasion debt—quantifying future biological invasions. Divers Distrib 22:445–456.  https://doi.org/10.1111/ddi.12408 CrossRefGoogle Scholar
  37. Russell KM, Galloway JN, Macko SA et al (1998) Sources of nitrogen in wet deposition to the Chesapeake Bay region. Atmos Environ 32:2453–2465.  https://doi.org/10.1016/S1352-2310(98)00044-2 CrossRefGoogle Scholar
  38. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot.  https://doi.org/10.1093/aob/mct048 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Saporetti AW, Schaefer CEGR, de Souza AL et al (2012) Influence of soil physical properties on plants of the Mussununga ecosystem, Brazil. Folia Geobot 47:29–39.  https://doi.org/10.2307/23264900 CrossRefGoogle Scholar
  40. Siemann E, Rogers WE (2003) Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands. J Ecol 91:923–931.  https://doi.org/10.1046/j.1365-2745.2003.00822.x CrossRefGoogle Scholar
  41. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123.  https://doi.org/10.1111/j.1461-0248.2007.01107.x CrossRefPubMedGoogle Scholar
  42. Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25CrossRefPubMedGoogle Scholar
  43. Sprent JI (2009) Legume nodulation: a global perspective. Wiley, LondonCrossRefGoogle Scholar
  44. Ulm F, Hellmann C, Cruz C, Máguas C (2017) N/P imbalance as a key driver for the invasion of oligotrophic dune systems by a woody legume. Oikos.  https://doi.org/10.1111/oik.03810 CrossRefGoogle Scholar
  45. Wilson GWT, Hartnett DC, Rice CW (2006) Mycorrhizal-mediated phosphorus transfer between tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct Ecol 20:427–435.  https://doi.org/10.1111/j.1365-2435.2006.01134.x CrossRefGoogle Scholar
  46. Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751.  https://doi.org/10.1111/ele.12462 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zabinski CA, Quinn L, Callaway RM (2002) Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Funct Ecol 16:758–765.  https://doi.org/10.1046/j.1365-2435.2002.00676.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • João Augusto Alves Meira-Neto
    • 1
    Email author
  • Maria Carolina Nunes Alves da Silva
    • 1
  • Gláucia Soares Tolentino
    • 1
  • Markus Gastauer
    • 1
    • 2
  • Tillmann Buttschardt
    • 3
  • Florian Ulm
    • 4
  • Cristina Máguas
    • 4
  1. 1.Laboratory of Ecology and Evolution of Plants - LEEPUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Technological Institute Vale – Sustainable DevelopmentBelémBrazil
  3. 3.Institute of Landscape Ecology - ILÖKUniversity of MuensterMuensterGermany
  4. 4.Center for Ecology, Evolution and Environmental Changes – CE3CFaculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations