Advertisement

Biological Invasions

, Volume 20, Issue 6, pp 1475–1491 | Cite as

Explaining variability in the production of seed and allergenic pollen by invasive Ambrosia artemisiifolia across Europe

  • Suzanne T. E. Lommen
  • Caspar A. Hallmann
  • Eelke Jongejans
  • Bruno Chauvel
  • Melinda Leitsch-Vitalos
  • Alla Aleksanyan
  • Peter Tóth
  • Cristina Preda
  • Maja Šćepanović
  • Huseyin Onen
  • Barbara Tokarska-Guzik
  • Paulina Anastasiu
  • Zita Dorner
  • Annamária Fenesi
  • Gerhard Karrer
  • Katalin Nagy
  • Gyula Pinke
  • Viktor Tiborcz
  • Gergely Zagyvai
  • Mihály Zalai
  • Gabriella Kazinczi
  • Robert Leskovšek
  • Danijela Stešević
  • Guillaume Fried
  • Levani Kalatozishvili
  • Andreas Lemke
  • Heinz Müller-Schärer
Original Paper

Abstract

To better manage invasive populations, it is vital to understand the environmental drivers underlying spatial variation in demographic performance of invasive individuals and populations. The invasive common ragweed, Ambrosia artemisiifolia, has severe adverse effects on agriculture and human health, due to its vast production of seeds and allergenic pollen. Here, we identify the scale and nature of environmental factors driving individual performance of A. artemisiifolia, and assess their relative importance. We studied 39 populations across the European continent, covering different climatic and habitat conditions. We found that plant size is the most important determinant in variation of per-capita seed and pollen production. Using plant volume as a measure of individual performance, we found that the local environment (i.e. the site) is far more influential for plant volume (explaining 25% of all spatial variation) than geographic position (regional level; 8%) or the neighbouring vegetation (at the plot level; 4%). An overall model including environmental factors at all scales performed better (27%), including the weather (bigger plants in warm and wet conditions), soil type (smaller plants on soils with more sand), and highlighting the negative effects of altitude, neighbouring vegetation and bare soil. Pollen and seed densities varied more than 200-fold between sites, with highest estimates in Croatia, Romania and Hungary. Pollen densities were highest on arable fields, while highest seed densities were found along infrastructure, both significantly higher than on ruderal sites. We discuss implications of these findings for the spatial scale of management interventions against A. artemisiifolia.

Keywords

Ragweed Environmental drivers Invasive alien plant Demographic performance Spatial variation 

Notes

Acknowledgements

This study was coordinated within the framework of the EU COST Action FA1203 “Sustainable management of Ambrosia artemisiifolia across Europe (SMARTER)” (Müller-Schärer and Lommen 2014). The SMARTER Task Force “Population Dynamics” was initiated to study natural variation in the demography of A. artemisiifolia across the European continent. This allowed collecting labour-intensive data at a large geographic scale, exceeding the capacity of individuals groups (Colautti et al. 2014). For the coordination of the work, we acknowledge financial support from the Swiss State Secretariat for Education, Research and Innovation (C13.0146 to HMS and STEL), the Swiss Federal Office for the Environment (13.0098.KP/M323-0760 to HMS) and that for Agriculture (1062-62,200 to HMS), the EU COST Action FA1203 ‘Sustainable management of Ambrosia artemisiifolia in Europe (SMARTER)’, and the Netherlands Organisation for Scientific Research (NWO-grants 840.11.001/841.11.007 to CAH and EJ). We thank Carsten Skjøth for providing all weather data, Yan Sun for data on occurrences of A. artemisiifolia for the bioclimatic analysis, Olivier Brönnimann for help with the latter, Daniel Chapman for sources on Ambrosia abundance, and Rudolf Rohr for statistical advice. We acknowledge the support of the many local funding bodies and we are grateful to all those who made this research possible locally: people that organised sites, land owners and managers, and not least tens of people that helped in collecting data. An extensive list of local funding bodies and people acknowledged is provided in the Electronic Supplementary Information.

Supplementary material

10530_2017_1640_MOESM1_ESM.pdf (688 kb)
Supplementary material 1 (PDF 688 kb)

References

  1. Bonini M, Sikoparija B, Prentovic M et al (2015) A follow-up study examining airborne Ambrosia pollen in the Milan area in 2014 in relation to the accidental introduction of the ragweed leaf beetle Ophraella communa. Aerobiologia 32:371–374CrossRefGoogle Scholar
  2. Buttenschøn RM, Waldispühl S, Bohren C (2009) Guidelines for management of common ragweed, Ambrosia artemisiifolia. University of Copenhagen, CopenhagenGoogle Scholar
  3. Chapman DS, Haynes T, Beal S et al (2014) Phenology predicts the native and invasive range limits of common ragweed. Glob Change Biol 20:192–202CrossRefGoogle Scholar
  4. Chapman DS, Makra L, Albertini R et al (2016) Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Glob Change Biol 22:3067–3079CrossRefGoogle Scholar
  5. Colautti RI, Franks SJ, Hufbauer RA et al (2014) The Global Garlic Mustard Field Survey (GGMFS): challenges and opportunities of a unique, large-scale collaboration for invasion biology. NeoBiota 21:29–47CrossRefGoogle Scholar
  6. Cunze S, Leiblein MC, Tackenberg O (2013) Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change. ISRN Ecol 2013:1–9CrossRefGoogle Scholar
  7. Déchamp C, Méon H, Reznik SY (2009) Ambrosia artemisiifolia L. an invasive weed in Europe and adjacent countries: the geographical distribution (except France) before 2009. In: Déchamp C, Méon H (eds) AMBROISIE: the first international ragweed review. Association Française d’Etude des Ambroisies (AFEDA), Saint-Priest, pp 24–46Google Scholar
  8. Deen W, Hunt T, Swanton CJ (1998) Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Sci 46:555–560Google Scholar
  9. Essl F, Biró K, Brandes D et al (2015) Biological flora of the British Isles: Ambrosia artemisiifolia. J Ecol 103:1069–1098CrossRefGoogle Scholar
  10. Fenesi A, Botta-Dukat Z (2012) Phenotypic divergences induced by different residence time in invasive common ragweeds. J Plant Ecol 5:174–181CrossRefGoogle Scholar
  11. Fenesi A, Albert Á-J, Ruprecht E (2014) Fine-tuned ability to predict future competitive environment in Ambrosia artemisiifolia seeds. Weed Res 54:58–69CrossRefGoogle Scholar
  12. Fumanal B, Chauvel B, Bretagnolle F (2007a) Estimation of pollen and seed production of common ragweed in France. Ann Agric Environ Med 14:233–236PubMedGoogle Scholar
  13. Fumanal B, Chauvel B, Sabatier A et al (2007b) Variability and cryptic heteromorphism of Ambrosia artemisiifolia seeds: What consequences for its invasion in France? Ann Bot 100:305–313CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fumanal B, Girod C, Fried G et al (2008) Can the large ecological amplitude of Ambrosia artemisiifolia explain its invasive success in France? Weed Res 48:349–359CrossRefGoogle Scholar
  15. Gallien L, Thuiller W, Fort N et al (2016) Is there any evidence for rapid, genetically-based, climatic niche expansion in the invasive common ragweed? PLoS ONE 11:e0152867CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gaudeul M, Giraud T, Kiss L et al (2011) Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia. PLoS ONE 6:e17658CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gentili R, Gilardelli F, Ciappetta S et al (2015) Inducing competition: intensive grassland seeding to control Ambrosia artemisiifolia. Weed Res 55:278–288CrossRefGoogle Scholar
  18. Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285CrossRefPubMedGoogle Scholar
  19. Hahn MA, Buckley YM, Mueller-Schaerer H (2012) Increased population growth rate in invasive polyploid Centaurea stoebe in a common garden. Ecol Lett 15:947–954CrossRefPubMedGoogle Scholar
  20. Hamaoui-Laguel L, Vautard R, Liu L et al (2015) Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Change 5:766–771CrossRefGoogle Scholar
  21. Jongejans E, Jorritsma-Wienk LD, Becker U et al (2010) Region versus site variation in the population dynamics of three short-lived perennials. J Ecol 98:279–289CrossRefGoogle Scholar
  22. Karrer G, Milakovic M, Kropf M et al (2011) Dispersal and management of a highly allergenic introduced plant—pathways and causes for the dispersal of ragweed (Ambrosia artemisiifolia) and options for control. BMLFUW, Vienna, p 329Google Scholar
  23. Karrer G, Skjoth CA, Sikoparija B et al (2015) Ragweed (Ambrosia) pollen source inventory for Austria. Sci Total Environ 523:120–128CrossRefPubMedGoogle Scholar
  24. Kazinczi G, Béres I, Novák R et al (2008) Common ragweed (Ambrosia artemisiifolia): a review with special regards to the results in Hungary. I. Taxonomy, origin and distribution, morphology, life cycle and reproduction strategy. Herbologia 9:55–92Google Scholar
  25. Kazinczi G, Béres I, Novák R et al (2009) Focusing again on common ragweed (Ambrosia artemisiifolia L.). Növényvédelem 45:389–403 (in Hungarian) Google Scholar
  26. Leiblein MC, Loesch R (2011) Biomass development and CO2 gas exchange of Ambrosia artemisiifolia L. under different soil moisture conditions. Flora 206:511–516CrossRefGoogle Scholar
  27. Leiblein-Wild MC, Tackenberg O (2014) Phenotypic variation of 38 European Ambrosia artemisiifolia populations measured in a common garden experiment. Biol Invasions 16:2003–2015CrossRefGoogle Scholar
  28. Leiblein-Wild MC, Kaviani R, Tackenberg O (2014) Germination and seedling frost tolerance differ between the native and invasive range in common ragweed. Oecologia 174:739–750CrossRefPubMedGoogle Scholar
  29. Leskovsek R, Datta A, Simoncic A et al (2012a) Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). J Pest Sci 85:527–539CrossRefGoogle Scholar
  30. Leskovsek R, Eler K, Batic F et al (2012b) The influence of nitrogen, water and competition on the vegetative and reproductive growth of common ragweed (Ambrosia artemisiifolia L.). Plant Ecol 213:769–781CrossRefGoogle Scholar
  31. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989CrossRefGoogle Scholar
  32. Lommen S, Jolidon E, Bustamante Eduardo J et al (2017) An early suitability assessment of two exotic Ophraella species (Coleoptera: Chrysomelidae) for biological control of invasive ragweed in Europe. Eur J Entomol 114:160–169CrossRefGoogle Scholar
  33. MacDonald AAM, Kotanen PM (2010) The effects of disturbance and enemy exclusion on performance of an invasive species, common ragweed, in its native range. Oecologia 162:977–986CrossRefPubMedGoogle Scholar
  34. Milakovic I, Fiedler K, Karrer G (2014) Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res 54:256–264CrossRefGoogle Scholar
  35. Morin L, Reid AM, Sims-Chilton NM et al (2009) Review of approaches to evaluate the effectiveness of weed biological control agents. Biol Control 51:1–15CrossRefGoogle Scholar
  36. Müller-Schärer H, Lommen S (2014) EU-COST Action on “Sustainable management of Ambrosia artemisiifolia in Europe” (COST FA1203-SMARTER): opportunities and challenges. Julius-Kühn-Archiv 445:148–155Google Scholar
  37. Müller-Schärer H, Lommen STE, Rossinelli M et al (2014) Ophraella communa, the ragweed leaf beetle, has successfully landed in Europe: fortunate coincidence or threat? Weed Res 54:109–119CrossRefGoogle Scholar
  38. Naimi B (2015) Uncertainty analysis for species distribution models. https://cran.r-project.org/web/packages/usdm/index.html. Accessed 01 June 2016
  39. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  40. Onen H, Farooq S, Gunal H et al (2017) Higher tolerance to abiotic stress and soil types may accelerate common ragweed (Ambrosia artemisiifolia) invasion. Weed Sci 65:115–127CrossRefGoogle Scholar
  41. Ortmans W, Mahy G, Chauvel B et al (2016) Performance variation of common ragweed (Ambrosia artemisiifolia L.) across invasion levels in Western Europe. Flora 220:134–141CrossRefGoogle Scholar
  42. Patracchini C, Vidotto F, Ferrero A (2011) Common ragweed (Ambrosia artemisiifolia) growth as affected by plant density and clipping. Weed Technol 25:268–276CrossRefGoogle Scholar
  43. Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413CrossRefGoogle Scholar
  44. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 01 June 2015
  45. Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396CrossRefPubMedGoogle Scholar
  46. Sikoparija B, Skjøth CA, Celenk S et al (2017) Spatial and temporal variations in airborne Ambrosia pollen in Europe. Aerobiologia 33:181–189CrossRefPubMedGoogle Scholar
  47. Simard M-J, Benoit DL (2011) Effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production. Ann Agric Environ Med 18:55–62PubMedGoogle Scholar
  48. Skálová H, Moravcová L, Dixon AFG et al (2015) Effect of temperature and nutrients on the growth and development of seedlings of an invasive plant. AoB Plants 7:plv044.  https://doi.org/10.1093/aobpla/plv044 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Skjoth CA, Smith M, Sikoparija B et al (2010) A method for producing airborne pollen source inventories: an example of Ambrosia (ragweed) on the Pannonian Plain. Agric For Meteorol 150:1203–1210CrossRefGoogle Scholar
  50. Smith M, Cecchi L, Skjoth CA et al (2013) Common ragweed: a threat to environmental health in Europe. Environ Int 61:115–126CrossRefPubMedGoogle Scholar
  51. Traveset A, Brundu G, Carta L et al (2008) Consistent performance of invasive plant species within and among islands of the Mediterranean basin. Biol Invasions 10:847–858CrossRefGoogle Scholar
  52. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  53. Vitalos M, Karrer G (2009) Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. In: Pyšek P, Pergl J (eds) Biological invasions: towards a synthesis, proceedings Neobiota, vol 8. pp 53–60Google Scholar
  54. von der Lippe M, Bullock JM, Kowarik I et al (2013) Human-mediated dispersal of seeds by the airflow of vehicles. PLoS ONE 8:e52733CrossRefPubMedPubMedCentralGoogle Scholar
  55. Weryszko-Chmielewska E, Piotrowska K (2008) Ecological features of Ambrosia artemisiifolia L. flowers and characteristics of Ambrosia L. pollen seasons in the condition of Lublin (Poland) in the years 2001–2008. Acta Agrobot 61:35–47CrossRefGoogle Scholar
  56. Wortman SE, Davis AS, Schutte BJ et al (2012) Local conditions, not regional gradients, drive demographic variation of giant ragweed (Ambrosia trifida) and common sunflower (Helianthus annuus) across northern U.S. maize belt. Weed Sci 60:440–450CrossRefGoogle Scholar
  57. Zhou ZS, Chen HS, Zheng XW et al (2014) Control of the invasive weed Ambrosia artemisiifolia with Ophraella communa and Epiblema strenuana. Biocontrol Sci Technol 24:950–964CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Suzanne T. E. Lommen
    • 1
  • Caspar A. Hallmann
    • 2
  • Eelke Jongejans
    • 2
  • Bruno Chauvel
    • 3
  • Melinda Leitsch-Vitalos
    • 4
  • Alla Aleksanyan
    • 5
  • Peter Tóth
    • 6
  • Cristina Preda
    • 1
    • 7
  • Maja Šćepanović
    • 8
  • Huseyin Onen
    • 9
  • Barbara Tokarska-Guzik
    • 10
  • Paulina Anastasiu
    • 11
  • Zita Dorner
    • 12
  • Annamária Fenesi
    • 13
  • Gerhard Karrer
    • 4
  • Katalin Nagy
    • 14
  • Gyula Pinke
    • 14
  • Viktor Tiborcz
    • 15
  • Gergely Zagyvai
    • 15
  • Mihály Zalai
    • 12
  • Gabriella Kazinczi
    • 16
  • Robert Leskovšek
    • 17
  • Danijela Stešević
    • 18
  • Guillaume Fried
    • 19
  • Levani Kalatozishvili
    • 20
  • Andreas Lemke
    • 21
  • Heinz Müller-Schärer
    • 1
  1. 1.Department of BiologyUniversity of FribourgFribourgSwitzerland
  2. 2.Institute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
  3. 3.Agroécologie, AgroSup Dijon, INRAUniv. Bourgogne Franche-ComtéDijonFrance
  4. 4.Institute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
  5. 5.Department of Geobotany and Eco-physiology, Institute of BotanyNational Academy of Sciences of ArmeniaYerevanArmenia
  6. 6.Department of Plant ProtectionSlovak University of AgricultureNitraSlovakia
  7. 7.Faculty of Natural and Agricultural SciencesOvidius University of ConstantaConstantaRomania
  8. 8.Faculty of AgricultureUniversity of ZagrebZagrebCroatia
  9. 9.Department of Plant Protection, Faculty of AgricultureGaziosmanpasa UniversityTokatTurkey
  10. 10.Department of Botany and Nature Protection, Faculty of Biology and Environmental ProtectionUniversity of Silesia in KatowiceKatowicePoland
  11. 11.Department of Botany and Microbiology & Botanic Garden “D. Brandza”University of BucharestBucharestRomania
  12. 12.Plant Protection InstituteSzent István UniversityGödöllőHungary
  13. 13.Hungarian Department of Biology and EcologyBabeş-Bolyai UniversityCluj-NapocaRomania
  14. 14.Faculty of Agricultural and Food SciencesSzéchenyi István UniversityMosonmagyaróvárHungary
  15. 15.Institute of Botany and Nature Conservation, Faculty of ForestryUniversity of West HungarySopronHungary
  16. 16.Institute of Plant Science, Faculty of Agricultural and Environmental SciencesKaposvár UniversityKaposvárHungary
  17. 17.Agricultural Institute of SloveniaLjubljanaSlovenia
  18. 18.Biology Department, Faculty of Natural Sciences and MathematicsUniversity of MontenegroPodgoricaMontenegro
  19. 19.Laboratoire de la Santé des Végétaux, Unité entomologie et plantes invasivesAnsesMonferrier-sur-LezFrance
  20. 20.Institute of BotanyIlia State UniversityTbilisiGeorgia
  21. 21.Department of Ecology, Chair of Plant Ecology and Ecosystem ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations