Biological Invasions

, Volume 20, Issue 4, pp 963–979 | Cite as

The impact of the introduced Digitonthophagus gazella on a native dung beetle community in Brazil during 26 years

  • Walter Mesquita Filho
  • Carlos A. H. Flechtmann
  • Wesley. A. C. Godoy
  • Ottar N. Bjornstad
Original Paper

Abstract

Following successful establishment in Australia and North America, the South African dung beetle (DB) Digitonthophagus gazella was introduced in Brazil in 1990. We investigated the impact of the exotic species on the native community of 42 native DB species using a unique weekly data set spanning 26 years, including 4 years of pre-invasion data. The invasion of D. gazella was very rapid with abundances increasing by 4 orders of magnitude during the first few years following establishment. We show that the DB diversity shrank to sixty percent of the pre-invasion level. Results from multivariate analyses identified three distinct periods of changes in composition and abundance: before the invasion (BI); after invasion I (AI-I); and AI-II each one characterized by a particular dynamic of the native species. The impacts on the native species differed according to their nesting behavior. Species with the same behavior as D. gazella (tunneler) became less abundant and five species went locally extinct. Dweller species, in contrast, became more abundant. Although the analysis of all species combined showed an increase in abundance and a less oscillatory dynamic in AI-II compared to BI, this was the case only for the dweller species, as the tunnelers showed a tendency to continued decrease throughout the 26-year study. Our results show that a new community was originated as a consequence of the invasion, in which dweller species, particularly Labarrus pseudolividus, are the dominant species and all the tunnelers, including D. gazella, are decreasing in abundance.

Keywords

Scarabaeidae Biological invasion Invasive species Native community Dung beetles Pasture area 

Notes

Acknowledgements

CAHF would like to thank his UNESP students Alexsander Seleguini, Angelo Luiz Tadeu Ottati, Cid Tacaoca Muraishi, Fabiana Oikawa, and Sérgio Roberto Rodrigues, who worked on the identification of the species over the years, all local Farm employees for making possible the collections throughout all these years, with special thanks to Moacir José Ruela, and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Process No. 99/08312-2) for financial support. WMF extends thanks to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Ph.D. grant, and to Damie Pak, Catherine Herzog and Rafael Zenni for their thoughtful reviews.

Supplementary material

10530_2017_1603_MOESM1_ESM.xlsx (20 kb)
Supplementary material 1 (XLSX 19 kb)
10530_2017_1603_MOESM2_ESM.docx (1.1 mb)
Supplementary material 2 (DOCX 1158 kb)

References

  1. Alvarez Bohle MC, Damborsky MP, Bar ME, Ocampo FC (2009) Records and distribution of the Afro Asian species Digitonthophagus gazella (Coleoptera: Scarabaeidae: Scarabaeinae) in Argentina. Rev la Soc Entomol Argentina 68:373–376Google Scholar
  2. Atkinson WD, Shorrocks B (1981) Competition on a divided and ephemeral resource: a simulation model. J Anim Ecol 50:461–471.  https://doi.org/10.2307/4067 CrossRefGoogle Scholar
  3. Barbero E, Lopez-Guerrero Y (1992) Some considerations on the dispersal power of Digitonthophagus gazella (Fabricius, 1787) in the New World (Coleoptera, Scarabaeidae, Scarabaeinae). Trop Zool 5:115–120.  https://doi.org/10.1080/03946975.1992.10539184 CrossRefGoogle Scholar
  4. Bertone M, Green J, Washburn S et al (2005) Seasonal activity and species composition of dung beetles (Coleoptera: Scarabaeidae and Geotrupidae) inhabiting cattle pastures in North Carolina. Ann Entomol Soc Am 98:309–321.  https://doi.org/10.1603/0013-8746(2005)098[0309:SAASCO]2.0.CO;2 CrossRefGoogle Scholar
  5. Bianchin I, Honer MR, Gomes A (1992) Controle integrado da mosca-dos-chifres na região Centro-Oeste. A Hora Vet 11:43–46Google Scholar
  6. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339.  https://doi.org/10.1016/j.tree.2011.03.023 PubMedCrossRefGoogle Scholar
  7. Blossey BB (1999) Before, during and after: the need for long-term monitoring in invasive plant species management. Biol Invasions 1:301–311.  https://doi.org/10.1023/a:1010084724526 CrossRefGoogle Scholar
  8. Blume RR, Aga A (1975) Onthophagus gazella: mass rearing and laboratory biology. Environ Entomol 4:735–736.  https://doi.org/10.1093/ee/4.5.735 CrossRefGoogle Scholar
  9. Blume RR, Aga A (1978) Onthophagus gazella F: progress of experimental release in south Texas. Folia Entomol Mex 39–40:190–191Google Scholar
  10. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R, 1st edn. Springer, New York.  https://doi.org/10.1007/978-1-4419-7976-6 CrossRefGoogle Scholar
  11. Bornemissza GF (1960) Could dung eating insects improve our pastures? J Aust Inst Agric Sci 26:54–56Google Scholar
  12. Bornemissza GF (1970) Insectary studies on the control of dung breeding flies by the activity of dung beetle, Onthophagus gazella (Coleoptera: Scarabaeinae). Aust J Entomol 9:31–41.  https://doi.org/10.1111/j.1440-6055.1970.tb00767.x CrossRefGoogle Scholar
  13. Bornemissza GF (1979) The Australian dung beetle research unit in Pretoria. S Afr J Sci 75:257–260Google Scholar
  14. Brown PMJ, Frost R, Doberski J et al (2011) Decline in native ladybirds in response to the arrival of Harmonia axyridis: early evidence from England. Ecol Entomol 36:231–240.  https://doi.org/10.1111/j.1365-2311.2011.01264.x CrossRefGoogle Scholar
  15. Brussaard L (1987) Kleptocopry of Aphodius coenosus (Coleoptera, Aphodiidae) in nests of Typhaeus typhoeus (Cleoptera, Geotrupidae) and its effect on soil morphology. Biol Fertil Soils 3–3:117–119.  https://doi.org/10.1007/BF00260591 Google Scholar
  16. Cambefort Y (1984) Etude écologique des Coléoptères Scarabaeidae de Côte d’Ivoire. Ecole Normale Supérieure, vol 3, pp 294 + 12. Travaux des chercheurs de la station de Lamto, 2-7288-0099-5 <hal-01374057>Google Scholar
  17. Chen IC, Hill JK, Ohlemueller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(80):1024–1026.  https://doi.org/10.1126/science.1206432 PubMedCrossRefGoogle Scholar
  18. Chesson P (1991) A need for niches? Trends Ecol Evol 6:26–28.  https://doi.org/10.1016/0169-5347(91)90144-m PubMedCrossRefGoogle Scholar
  19. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366.  https://doi.org/10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  20. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329.  https://doi.org/10.2980/i1195-6860-12-3-316.1 CrossRefGoogle Scholar
  21. Dangles O, Carpio C, Woodward G (2012) Size-dependent species removal impairs ecosystem functioning in a large-scale tropical field experiment. Ecology 93:2615–2625PubMedCrossRefGoogle Scholar
  22. Davis ALV (1996) Community organization of dung beetles (Coleoptera: Scarabaeidae): differences in body size and functional group structure between habitats. Afr J Ecol 34:258–275.  https://doi.org/10.1111/j.1365-2028.1996.tb00621.x CrossRefGoogle Scholar
  23. de Oca EM, Halffter G (1995) Daily and seasonal activities of a guild of the coprophagous, burrowing beetle (Coleoptera Scarabaeidae Scarabaeinae) in tropical grassland. Trop Zool 8:159–180.  https://doi.org/10.1080/03946975.1995.10539277 CrossRefGoogle Scholar
  24. de Oca EM, Halffter G (1998) Invasion of Mexico by two dung beetles previously introduced into the United States. Stud Neotrop Fauna Environ 33:37–45.  https://doi.org/10.1076/snfe.33.1.37.2174 CrossRefGoogle Scholar
  25. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449.  https://doi.org/10.1111/j.1365-294X.2007.03538.x PubMedCrossRefGoogle Scholar
  26. Drake JM (2004) Allee effects and the risk of biological invasion. Risk Anal 24:795–802.  https://doi.org/10.1111/j.0272-4332.2004.00479.x PubMedCrossRefGoogle Scholar
  27. Dray S, Legendre P, Blanchet G (2013) packfor: forward selection with permutation R package version 00-8/r109. https://rdrr.io/rforge/packfor/
  28. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139.  https://doi.org/10.1016/s0169-5347(98)01554-7 PubMedCrossRefGoogle Scholar
  29. Duncan RP (2016) How propagule size and environmental suitability jointly determine establishment success: a test using dung beetle introductions. Biol Invasions 18:985–996.  https://doi.org/10.1007/s10530-016-1083-8 CrossRefGoogle Scholar
  30. Ellison AM (2010) Partitioning diversity. Ecology 91:1962–1963.  https://doi.org/10.1890/09-1692.1 PubMedCrossRefGoogle Scholar
  31. Errouissi F, Haloti S, Jay-robert P et al (2004) Effects of the attractiveness for dung beetles of dung pat origin and size along a climatic gradient. Environ Entomol 33:45–53.  https://doi.org/10.1603/0046-225X-33.1.45 CrossRefGoogle Scholar
  32. Filgueiras BKC, Liberal CN, Aguiar CDM et al (2009) Attractivity of omnivore, carnivore and herbivore mammalian dung to Scarabaeinae (Coleoptera, Scarabaeidae) in a tropical Atlantic rainforest remnant. Rev Bras Entomol 53:422–427.  https://doi.org/10.1590/S0085-56262009000300017 CrossRefGoogle Scholar
  33. Flechtmann CAH, Rodrigues SR, do Couto HTZ (1995a) Controle biológico da mosca-dos-chifres (Haematobia irritans irritans) em Selvíria, Mato Grosso do Sul. 2. Ação de insetos fimícolas em massas fecais no campo. Rev Bras Entomol 39:237–247Google Scholar
  34. Flechtmann CAH, Rodrigues SR, do Couto HTZ (1995b) Controle biológico da mosca-dos-chifres (Haematobia irritans irritans) em Selvíria, Mato Grosso do Sul. 4. Comparação entre métodos de coleta de besouros coprófagos (Scarabaeidae). Rev Bras Entomol 39:259–276Google Scholar
  35. Flechtmann CAH, Rodrigues SR, Gaspareto CL, do Couto HTZ (1995c) Controle biológico da mosca-dos-chifres (Haematobia irritans irritans) em Selvíria, Mato Grosso do Sul. 5. Seleção de besouros coprófagos. Rev Bras Entomol 39:277–286Google Scholar
  36. Flechtmann CAH, Rodrigues SR, Seno MCZ (1995d) Controle biológico da mosca-dos-chifres (Haematobia irritans irritans) em Selvíria, Mato Grosso do Sul. 1. Metodologia de estudo e seleção de fauna fimícola de insetos. Rev Bras Entomol 39:1–11Google Scholar
  37. Flechtmann CAH, Rodrigues SR, Seno MCZ (1995e) Controle biológico da mosca-dos-chifres (Haematobia irritans irritans) em Selvíria, Mato Grosso do Sul. 3. Levantamento de espécies fimícolas associadas à mosca. Rev Bras Entomol 39:249–258Google Scholar
  38. Flechtmann CAH, Tabet VG, Quintero I (2009) Influence of carrion smell and rebaiting time on the efficiency of pitfall traps to dung beetle sampling. Entomol Exp Appl 132:211–217.  https://doi.org/10.1111/j.1570-7458.2009.00885.x CrossRefGoogle Scholar
  39. Fowler MS, Ruokolainen L (2013) Colonization, covariance and colour: environmental and ecological drivers of diversity-stability relationships. J Theor Biol 324:32–41.  https://doi.org/10.1016/j.jtbi.2013.01.016 PubMedCrossRefGoogle Scholar
  40. Génier F, Moretto P (2017) Digitonthophagus Balthasar, 1959: taxonomy, systematics, and morphological phylogeny of the genus revealing an African species complex (Coleoptera: Scarabaeidae: Scarabaeinae). Zootaxa 4248:110.  https://doi.org/10.11646/zootaxa.4248.1.1 CrossRefGoogle Scholar
  41. Gill BD (1991) Dung beetles in Tropical American forests. In: Hanski I, Cambefort Y (eds) Dung beetle ecology, 1st edn. Princeton University Press, Princeton, pp 211–229Google Scholar
  42. Giller PS, Doube BM (1989) Experimental analysis of inter- and intraspecific competition in dung beetle communities. J Anim Ecol 58:129–142.  https://doi.org/10.2307/4990 CrossRefGoogle Scholar
  43. Giller PS, Doube BM (1994) Spatial and temporal co-occurrence of competitors in Southern African dung beetle communities. J Anim Ecol 63:629–643.  https://doi.org/10.2307/5229 CrossRefGoogle Scholar
  44. Grisi L, Leite RC, de Souza Martins JR et al (2014) Reassessment of the potential economic impact of cattle parasites in Brazil. Rev Bras Parasitol Vet 23:150–156.  https://doi.org/10.1590/s1984-29612014042 PubMedCrossRefGoogle Scholar
  45. Gutierrez J, Macqueen A, Brun LO (1988) Essais d’introduction de quatre espèces de bousiers Scarabaeinae en Nouvelle Calédonie et au Vanuatu. Acta Oecol Oecol Appl 9:39–53Google Scholar
  46. Halffter G, Edmonds WD (1982) The nesting behavior of dung beetles (Scarabaeinae): an ecological and evolutive approach, 1st edn. Instituto de Ecología, MéxicoGoogle Scholar
  47. Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera. Scarabaeidae). A monograph. Folia Entomol Mex 12/14:1–32Google Scholar
  48. Halffter G, Favila ME, Halffter V (1992) A comparative study of the structure of the scarab guild in Mexican tropical rain forests and derived ecosystems. Folia Entomol Mex 84:131–156Google Scholar
  49. Hammond PM (1976) Kleptoparasitic behaviour of Onthophagus suturalis Peringuey (Coleoptera: Scarabaeidae) and other dung-beetles. Coleopt Bull 30:245–249Google Scholar
  50. Hanski I (1991) The dung insect community. In: Hanski I, Cambefort Y (eds) Dung beetle ecology, 1st edn. Princeton University Press, Princeton, pp 5–21Google Scholar
  51. Hanski I, Cambefort Y (1991a) Competition in dung beetles. In: Hanski I, Cambefort Y (eds) Dung beetle ecology, 1st edn. Princeton University Press, Princeton, pp 305–329Google Scholar
  52. Hanski I, Cambefort Y (1991b) Dung beetle ecology, 1st edn. Princeton University Press, PrincetonGoogle Scholar
  53. Hengeveld R (1989) Dynamics of Biological Invasions, 1st edn. Springer, Netherlands, DordrechtGoogle Scholar
  54. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432.  https://doi.org/10.2307/1934352 CrossRefGoogle Scholar
  55. Hill CO (1996) Habitat specificity and food preferences of an assemblage of tropical Australian dung beetles. J Trop Ecol 12:449–446. http://www.jstor.org/stable/2560300
  56. Holm E, Wallace MMH (1987) The influence of superphosphate on the establishment of introduced dung beetles in Southeastern Australia. J Aust Inst Agric Sci 53:202–204Google Scholar
  57. Holter P (1979) Abundance and reproductive strategy of the dung beetle Aphodius rufipes (L.) (Scarabaeidae). Ecol Entomol 4:317–326.  https://doi.org/10.1111/j.1365-2311.1979.tb00591.x CrossRefGoogle Scholar
  58. Holter P (1982) Resource utilization and local coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39:213.  https://doi.org/10.2307/3544488 CrossRefGoogle Scholar
  59. Howden HF (1955) Cases of interspecific “parasitism” in Scarabaeidae (Coleoptera). J Tenn Acad Sci 30:64–66Google Scholar
  60. Howden HF, Scholtz CH (1986) Changes in a Texas dung beetle community between 1975 and 1985 (Coleoptera, Scarabaeidae, Scarabaeinae). Coleopt Bull 40:313–316Google Scholar
  61. Hutton SA, Giller PS (2004) Intra- and interspecific aggregation of north temperate dung beetles on standardised and natural dung pads: the influence of spatial scale. Ecol Entomol 29:594–605.  https://doi.org/10.1111/j.0307-6946.2004.00634.x CrossRefGoogle Scholar
  62. Ives AR (1988a) Aggregation and the coexistence of competitors. Ann Zool Fennici 25:75–88Google Scholar
  63. Ives AR (1988b) Covariance, coexistence and the population dynamics of two competitors using patchy resource. J Theor Biol 133:345–361.  https://doi.org/10.1016/s0022-5193(88)80326-6 CrossRefGoogle Scholar
  64. Kenis M, Auger-Rozenberg M-AA, Roques A et al (2009) Ecological effects of invasive alien insects. Biol Invasions 11:21–45.  https://doi.org/10.1007/s10530-008-9318-y CrossRefGoogle Scholar
  65. Klein BC (1989) Effects of forest fragmentation on dung and carrion beetle communities in Central Amazonia. Ecology 70:1715–1725.  https://doi.org/10.2307/1938106 CrossRefGoogle Scholar
  66. Klemperer HG (1980) Kleptoparasitic behaviour of Aphodius rufipes (L.) larvae in nests of Geotrupes spiniger Marsh. (Coleoptera, Scarabaeidae). Ecol Entomol 5:143–151.  https://doi.org/10.1111/j.1365-2311.1980.tb01135.x CrossRefGoogle Scholar
  67. Kohlmann B (1991) Dung beetles in Subtropical North America. In: Hanski I, Cambefort Y (eds) Dung beetle ecology, 1st edn. Princeton University Press, Princeton, pp 116–132Google Scholar
  68. Koskela H (1979) Patterns of diel flight activity in dung-inhabiting beetles: an ecological analysis. Oikos 33:419–439.  https://doi.org/10.2307/3544330 CrossRefGoogle Scholar
  69. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263.  https://doi.org/10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  70. Krell F-T, Krell-Westerwalbesloh S, Weiß I et al (2003) Spatial separation of Afrotropical dung beetle guilds: a trade-off between competitive superiority and energetic constraints (Coleoptera: Scarabaeidae). Ecography (Cop) 26:210–222.  https://doi.org/10.1034/j.1600-0587.2003.03278.x CrossRefGoogle Scholar
  71. Lee JM, Peng Y-S (1981) Influence of adult size of Onthophagus gazella on manure pat degradation, nest construction, and progeny size. Environ Entomol 10:626–630.  https://doi.org/10.1093/ee/10.5.626 CrossRefGoogle Scholar
  72. Lee JM, Peng Y-S (1982) Influence of manure availability and nesting density on the progeny size of Onthophagus gazella. Environ Entomol 11:38–41.  https://doi.org/10.1093/ee/11.1.38 CrossRefGoogle Scholar
  73. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  74. Liebhold AM, Yamanaka T, Roques A et al (2016) Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biol Invasions 18:893–905.  https://doi.org/10.1007/s10530-016-1079-4 CrossRefGoogle Scholar
  75. Manning P, Slade EM, Beynon SA, Lewis OT (2016) Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric Ecosyst Environ 218:87–94.  https://doi.org/10.1016/j.agee.2015.11.007 CrossRefGoogle Scholar
  76. Marengo JA, Tomasella J, Uvo CR (1998) Trends in streamflow and rainfall in tropical South America: Amazonia, eastern Brazil, and northwestern Peru. J Geophys Res Atmos 103:1775–1783.  https://doi.org/10.1029/97JD02551 CrossRefGoogle Scholar
  77. Martín-Piera F, Lobo JM (1993) New data and observations on kleptoparasitic behaviour in dung beetles from temperate regions (Coleoptera: Scarabaeoidea). Acta Zool Mex 537:15–18Google Scholar
  78. Martins E, Contel EPB (2001) African dung beetle Onthophagus gazella Fabricius (Coleoptera: Scarabaeidae) esterase isozymes. Braz J Biol 61:645–650.  https://doi.org/10.1590/S1519-69842001000400014 PubMedCrossRefGoogle Scholar
  79. Matioli JC, Silveira Neto S (1988) Armadilhas luminosas: funcionamento e utilização. Boletim Técnico da EPAMIG 28:1–44Google Scholar
  80. McCarthy JM, Hein CL, Olden JD et al (2006) Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshw Biol 51:224–235.  https://doi.org/10.1111/j.1365-2427.2005.01485.x CrossRefGoogle Scholar
  81. McGeoch MA, Lythe MJ, Henriksen MV, McGrannachan CM (2015) Environmental impact classification for alien insects: a review of mechanisms and their biodiversity outcomes. Curr Opin Insect Sci 12:46–53.  https://doi.org/10.1016/j.cois.2015.09.004 CrossRefGoogle Scholar
  82. Menéndez R, Webb P, Orwin KH (2016) Complementarity of dung beetle species with different functional behaviours influence dung-soil carbon cycling. Soil Biol Biochem 92:142–148.  https://doi.org/10.1016/j.soilbio.2015.10.004 CrossRefGoogle Scholar
  83. Morrison LW (2002) Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenopsis invicta. Ecology 83:2337–2345.  https://doi.org/10.2307/3072064 CrossRefGoogle Scholar
  84. Nation JL (2015) Insect physiology and biochemistry, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  85. Nichols E, Larsen T, Spector S et al (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19.  https://doi.org/10.1016/j.biocon.2007.01.023 CrossRefGoogle Scholar
  86. Noriega JA, Horgan FG, Larsen TH, Valencia G (2010) Records of an invasive dung beetle species, Digitonthophagus gazella (Fabricius, 1787) (Coleoptera: Scarabaeidae), in Peru. Acta Zool Mex Nueva Ser 26:451–456Google Scholar
  87. Noriega JA, Delgado O, Blanco JI et al (2017) Introduction, establishment, and invasion of Digitonthophagus gazella (Fabricius, 1787) (Coleoptera: Scarabaeinae) in the savannas of Venezuela and Colombia. Nat Resour 8:370–381.  https://doi.org/10.4236/nr.2017.85023 Google Scholar
  88. Oksanen, J, Blanchet FG, Kindt R et al (2015) vegan: community Ecology Package R package version 23-1. https://cran.r-project.org/web/packages/vegan/index.html
  89. Porter SD, Savignano DA (1990) Invasion of polygine fire ants decimates native ants and disrupts arthropod community. Ecology 71:2095–2106.  https://doi.org/10.2307/1938623 CrossRefGoogle Scholar
  90. R Core Team (2015) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
  91. Ramsay J, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York.  https://doi.org/10.1007/b98888 Google Scholar
  92. Rich C, Longcore T (2006) Ecological consequences of artificial night lighting. Island Press, WashingtonGoogle Scholar
  93. Ridsdill-Smith TJ (1991) Competition in dung-breeding insects. In: Bailey WJ, Ridsdill-Smith TJ (eds) Reproductive behaviour in insects—individuals and populations, 1st edn. Chapman and Hall, Melbourne, pp 264–292Google Scholar
  94. Ridsdill-Smith TJ, Edwards PB (2011) Biological control: ecosystem functions provided by dung beetles. In: Ridsdill-Smith TJ, Simmons LW (eds) Ecology and evolution of dung beetles, 1st edn. Wiley-Blackwell, Oxford, pp 245–266.  https://doi.org/10.1002/9781444342000.ch12 CrossRefGoogle Scholar
  95. Ridsdill-Smith TJ, Hall GP, Craig GF (1982) Effect of population density on reproduction and dung dispersal by the dung beetle Onthophagus binodis in the laboratory. Entomol Exp Appl 32:80–85.  https://doi.org/10.1111/j.1570-7458.1982.tb03184.x CrossRefGoogle Scholar
  96. Ripa SR, Rojas PS, Velasco G (1995) Releases of biological control agents of insect pests on Easter Island (Pacific Ocean). Entomophaga 40:427–440.  https://doi.org/10.1007/bf02373730 CrossRefGoogle Scholar
  97. Rivera C, Wolff M (2007) Digitonthophagus gazella (Coleoptera: Scarabaeidae): distribución en América y dos nuevos registros para Colombia. Rev Colomb Entomol 33:190–192Google Scholar
  98. Rougon D, Rougon C (1980) Le cleptoparasitisme en zone sahélienne: phénomène adaptatif d’insects Coléoptères Coprophages Scarabaidae aux climats arides et semi-arides. Comptes Rendus des Séances L’Académie des Sci 291:417–419Google Scholar
  99. Rowles AD, O’Dowd DJ (2007) Interference competition by Argentine ants displaces native ants: implications for biotic resistance to invasion. Biol Invasions 9:73–85.  https://doi.org/10.1007/s10530-006-9009-5 CrossRefGoogle Scholar
  100. Roy HE, Brown PMJJ (2015) Ten years of invasion: Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Britain. Ecol Entomol 40:336–348.  https://doi.org/10.1111/een.12203 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Roy S, Lavine J, Chiaromonte F et al (2009) Multivariate statistical analyses demonstrate unique host immune responses to single and dual lentiviral infection. PLoS ONE.  https://doi.org/10.1371/journal.pone.0007359 Google Scholar
  102. Ruokolainen L, Ranta E, Kaitala V, Fowler MS (2009) Community stability under different correlation structures of species’ environmental responses. J Theor Biol 261:379–387.  https://doi.org/10.1016/j.jtbi.2009.08.010 PubMedCrossRefGoogle Scholar
  103. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332.  https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  104. Scheffler PY (2005) Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. J Trop Ecol 21:9–19.  https://doi.org/10.1017/S0266467404001683 CrossRefGoogle Scholar
  105. Seymour J (1980) Dung beetles get a little help from their friends. Ecos 26:20–25Google Scholar
  106. Shorrocks B, Rosewell J, Edwards K, Atkinson W (1984) Interspecific competition is not a major organizing force in many insect communities. Nature 310:310–312.  https://doi.org/10.1038/310310a0 CrossRefGoogle Scholar
  107. Simberloff D (2014) Biological invasions: what’s worth fighting and what can be won? Ecol Eng 65:112–121.  https://doi.org/10.1016/j.ecoleng.2013.08.004 CrossRefGoogle Scholar
  108. Slade EM, Mann DJ, Villanueva JF, Lewis OT (2007) Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J Anim Ecol 76:1094–1104.  https://doi.org/10.1111/j.1365-2656.2007.01296.x PubMedCrossRefGoogle Scholar
  109. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci USA 99:15497–15500.  https://doi.org/10.1073/pnas.242437499 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651.  https://doi.org/10.1016/j.tree.2006.07.007 PubMedCrossRefGoogle Scholar
  111. Stricker KB, Hagan D, Flory SL (2015) Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research. AoB Plants 7:plv028.  https://doi.org/10.1093/aobpla/plv028 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York.  https://doi.org/10.1007/978-0-387-21706-2 CrossRefGoogle Scholar
  113. Verdú JR, Galante E (1997) Aphodius brasiliensis Castelnau (Coleoptera: Aphodidae): larval morphology and notes on biology. Coleopt Bull 51:378–383Google Scholar
  114. Verdú JR, Cortez V, Ortiz AJ et al (2015) Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci Rep.  https://doi.org/10.1038/srep13912 PubMedPubMedCentralGoogle Scholar
  115. Vidaurre T, Noriega JA, Julieta Ledezma M (2008) First report on the distribution of Digitonthophagus gazella (Fabricius, 1787) (Coleoptera: Scarabeaidae) in Bolivia. Acta Zool Mex Nueva Ser 24:217–220Google Scholar
  116. Vilà M, Hulme PE (2017) Impact of biological invasions on ecosystem services, 1st edn. Springer, Cham.  https://doi.org/10.1007/978-3-319-45121-3 CrossRefGoogle Scholar
  117. Vilà M, Basnou C, Pysek P et al (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144.  https://doi.org/10.1890/080083 CrossRefGoogle Scholar
  118. Wilson KA, Magnuson JJ, Lodge DM et al (2004) A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Can J Fish Aquat Sci 61:2255–2266.  https://doi.org/10.1139/f04-170 CrossRefGoogle Scholar
  119. Yelenik SG, D’Antonio CM (2013) Self-reinforcing impacts of plant invasions change over time. Nature 503:517–520.  https://doi.org/10.1038/nature12798 PubMedCrossRefGoogle Scholar
  120. Young OP (2007) Relationships between an introduced and two native dung beetle species (Coleoptera: Scarabaeidae) in Georgia. Southeast Nat 6:491–504.  https://doi.org/10.1656/1528-7092(2007)6[491:RBAIAT]2.0.CO;2 CrossRefGoogle Scholar
  121. Zenni RD, Dickie IA, Wingfield MJ et al (2017) Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB Plants 9:plw085.  https://doi.org/10.1093/aobpla/plw085 Google Scholar
  122. Zunino M, Barbero E (1993) Escarabajos, ganado, pastizales: algunas consideraciones deontologicas. Folia Entomol Mex 87:95–101Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de QueirozUniversidade de São Paulo (USP)PiracicabaBrazil
  2. 2.Departamento de Fitossanidade, Faculdade de EngenhariaUniversidade Estadual Paulista (UNESP)Ilha SolteiraBrazil
  3. 3.Departments of Entomology and BiologyPenn State UniversityUniversity ParkUSA

Personalised recommendations