Biological Invasions

, Volume 19, Issue 12, pp 3571–3588 | Cite as

Alien plants as mediators of ecosystem services and disservices in urban systems: a global review

  • Luke J. PotgieterEmail author
  • Mirijam Gaertner
  • Christoph Kueffer
  • Brendon M. H. Larson
  • Stuart W. Livingstone
  • Patrick J. O’Farrell
  • David M. Richardson


Urban areas have unique assemblages of species which are governed by novel ecological processes. People living in these environments have specific needs and demands in terms of ecosystem services (ES). Urban ecosystems are transformed in many ways by human activities and their floras comprise a high proportion of alien plant species, many of which were intentionally introduced to provide, augment or restore ES. Urban environments also have novel disturbance regimes and provide colonization sites for the establishment, dispersal and proliferation of alien plant species; such conditions often generate biological invasions which may cause marked changes to ES. We review the roles that alien plants play in providing urban ES and ecosystem disservices (EDS) globally. We identify the main ES and EDS associated with alien plants, and highlight the key species involved. A literature search revealed 335 papers, representing studies in 58 cities or urban areas in 27 countries. These studies recorded 337 alien plant species, contributing to 39 different ES and 27 EDS–310 species were recorded as contributing to ES and 53 species to EDS. A small number of alien plant taxa were frequently recorded as providing multiple ES in many urban ecosystems; the 10 most recorded species accounted for 21% of the ES recorded. Some of these species also result in significant EDS; three species accounted for 30% of the EDS recorded. Cultural services (notably aesthetics) are the most reported ES provided by alien plants in urban areas of developed countries, while provisioning services (notably food production) are most reported in developing countries. The most commonly studied EDS provided by alien plants is the impact on human health (notably allergic reactions). Eighty percent of studies on alien plants and ES and EDS have been done in developed countries. To elucidate the full range of effects of alien plants, more work is needed in developing countries. Urban planners and managers need to be mindful of both the positive and negative impacts of alien plant species to maximise the provision of ES.


Ailanthus altissima Biological invasions Developed and developing countries Human health Planning and management Plant invasions Tree invasions Urbanisation Urban ecosystems 



We acknowledge financial support from the DST-NRF Centre of Excellence for Invasion Biology (C·I·B) and the National Research Foundation of South Africa (Grant 85417 to DMR). An early version of this paper was presented at a workshop on “Non-native species in urban environments: Patterns, processes, impacts and challenges” that was hosted by the C·I·B in Stellenbosch in November 2016. Many participants at the workshop provided useful comments and suggestions that improved the paper.

Supplementary material

10530_2017_1589_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)
10530_2017_1589_MOESM2_ESM.docx (57 kb)
Supplementary material 2 (DOCX 57 kb)
10530_2017_1589_MOESM3_ESM.docx (57 kb)
Supplementary material 3 (DOCX 56 kb)
10530_2017_1589_MOESM4_ESM.docx (23 kb)
Supplementary material 4 (DOCX 22 kb)


  1. Abson DJ, Termansen M (2011) Valuing ecosystem services in terms of ecological risks and returns. Conserv Biol 25:250–258PubMedGoogle Scholar
  2. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66CrossRefGoogle Scholar
  3. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198CrossRefGoogle Scholar
  4. Anderson PML, O’Farrell PJ (2012) An ecological view of the history of the establishment of the City of Cape Town. Ecol Soc 17(3):28CrossRefGoogle Scholar
  5. Andersson E, Barthel S, Ahrné K (2007) Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol Appl 17:1267–1278. doi: 10.1890/06-1116.1 PubMedCrossRefGoogle Scholar
  6. Aronson MFJ, Handel SN, Clemants SE (2007) Fruit type, life form and origin determine the success of woody plant invaders in an urban landscape. Biol Invasions 9:465–475. doi: 10.1007/s10530-006-9053-1 CrossRefGoogle Scholar
  7. Ballero M, Ariu A, Falagiani P (2003) Allergy to Ailanthus altissima (tree of heaven) pollen. Allergy 58:532–533. doi: 10.1034/j.1398-9995.2003.00172.x PubMedCrossRefGoogle Scholar
  8. Barau AS (2015) Perception and contributions of households towards sustainable urban green infrastructure in Malaysia. Habitat Int 47:285–297CrossRefGoogle Scholar
  9. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404. doi: 10.1111/j.1461-0248.2009.01387.x PubMedCrossRefGoogle Scholar
  10. Bigirimana J, Bogaert J, De Cannière C et al (2012) Domestic garden plant diversity in Bujumbura, Burundi: role of the socio-economical status of the neighborhood and alien species invasion risk. Landsc Urban Plan 107:118–126. doi: 10.1016/j.landurbplan.2012.05.008 CrossRefGoogle Scholar
  11. Blanckaert I, Swennen RL, Paredes Flores M et al (2004) Floristic composition, plant uses and management practices in homegardens of San Rafael Coxcatlan, Valley of Tehuacan-Cuicatlan, Mexico. J Arid Environ 57:179–202. doi: 10.1016/S0140-1963(03)00100-9 CrossRefGoogle Scholar
  12. Bogacki M, Syguła P (2013) The impact of biogenic volatile organic compounds emission on photochemical processes occurring in the troposphere. Geom Environ Eng 7(1):37–46CrossRefGoogle Scholar
  13. Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29:293–301. doi: 10.1016/S0921-8009(99)00013-0 CrossRefGoogle Scholar
  14. Borgström ST, Elmqvist T, Angelstam P, Alfsen-norodom C (2006) Scale mismatches in management of urban landscapes. Ecol Soc 11:16. doi: 10.1097/MCC.0b013e32807f2aa5 CrossRefGoogle Scholar
  15. Burrows GE, Tyrl RJ (2013) Toxic plants of North America, 2nd edn. Wiley-Blackwell, HobokenGoogle Scholar
  16. Cadotte et al (2017) Are urban systems beneficial, detrimental, or indifferent to species invasion. Biol Invasions. doi: 10.1007/s10530-017-1586-y
  17. Caceres HLL, Gerold G (2009) The costs of invasion control measures subtropical Ailanthus altissima in Hesse. Conference on international research on food security, natural resource management and rural development, TropentagGoogle Scholar
  18. Carpenter S, Walker B, Anderies JM, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4:765–781. doi: 10.1007/si0021-001-0045-9 CrossRefGoogle Scholar
  19. Casella F, Vurro M (2013) Ailanthus altissima (tree of heaven): spread and harmfulness in a case-study urban area. Arboric J Int J Urban For 35:172–181. doi: 10.1080/03071375.2013.852352 CrossRefGoogle Scholar
  20. Castro-Diez P, Godoy O, Saldana A, Richardson DM (2011) Predicting invasiveness of Australian acacias on the basis of the native climatic affinities, life history traits and human use. Divers Distrib 17:934–945. doi: 10.1111/j.1472-4642.2011.00778.x CrossRefGoogle Scholar
  21. Celesti-Grapow L, Blasi C (1998) A comparison of the urban flora of different phytoclimatic regions in Italy. Glob Ecol Biogeogr Lett 7:367–378. doi: 10.1046/j.1466-822X.1998.00304.x Google Scholar
  22. Celesti-Grapow L, Blasi C (2004) The role of alien and native weeds in the deterioration of archaeological remains in Italy. Weed Technol 18:1508–1513. doi:10.1614/0890-037X(2004)018[1508:TROAAN]2.0.CO;2Google Scholar
  23. Chalker-Scott L (2015) Nonnative, noninvasive woody species can enhance landscape biodiversity. Arboric Urban For 41:173–186Google Scholar
  24. Chan KMA, Guerry AD, Balvanera P et al (2012) Where are cultural and social in ecosystem services? A framework for constructive engagement. Bioscience 62:744–756. doi: 10.1525/bio.2012.62.8.7 CrossRefGoogle Scholar
  25. Charles H, Dukes JS (2007) Impacts of invasive species on ecosystem services. In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 217–238CrossRefGoogle Scholar
  26. Chocholoušková Z, Pyšek P (2003) Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzeň. Flora Morphol Distrib Funct Ecol Plants 198:366–376. doi: 10.1078/0367-2530-00109 CrossRefGoogle Scholar
  27. Cierjacks A, Kowarik I, Joshi J et al (2013) Biological flora of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640. doi: 10.1111/1365-2745.12162 CrossRefGoogle Scholar
  28. Cilliers SS, Siebert S (2012) Urban ecology in Cape Town. Ecol Soc 17(3):33. doi: 10.5751/ES-05146-170333 CrossRefGoogle Scholar
  29. Cilliers S, Cilliers J, Lubbe R, Siebert S (2013) Ecosystem services of urban green spaces in African countries-perspectives and challenges. Urban Ecosyst 16:681–702. doi: 10.1007/s11252-012-0254-3 CrossRefGoogle Scholar
  30. Clarke LW, Li L, Jenerette GD, Yu Z (2014) Drivers of plant biodiversity and ecosystem service production in home gardens across the Beijing Municipality of China. Urban Ecosyst 17(3):741–760. doi: 10.1007/s11252-014-0351-6 CrossRefGoogle Scholar
  31. Cohen B (2004) Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts. World Dev 32(1):23–51. doi: 10.1016/j.worlddev.2003.04.008 CrossRefGoogle Scholar
  32. Costanza R, Wilson M, Troy A, Voinov A, Liu S, D’Agostino J (2007) The value of New Jersey’s ecosystem services and natural capital. Project report to the New Jersey Department of Environmental ProtectionGoogle Scholar
  33. Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. doi: 10.1146/132403 CrossRefGoogle Scholar
  34. de Wit M, van Zyl H, Crookes D, Blignaut J, Jayiya T, Goiset V, Mahumani B (2009) Investing in natural assets: a business case for the environment in the City of Cape Town. Report prepared for the City of Cape Town, Natural Value Joint Venture, Brackenfell, South Africa. Accessed 21 Feb 2016
  35. Dearborn DC, Kark S (2010) Motivations for conserving urban biodiversity. Conserv Biolo 24:432–440CrossRefGoogle Scholar
  36. Derrick EK, Darley C (1994) Contact reaction to the tree of heaven. Contact Dermat 30(3):178. doi: 10.1111/j.1600-0536.1994.tb00706.x CrossRefGoogle Scholar
  37. Dickie IA, Bennett BM, Burrows LE et al (2014) Conflicting values: ecosystem services and invasive tree management. Biol Invasions 16:705–719. doi: 10.1007/s10530-013-0609-6 CrossRefGoogle Scholar
  38. Drescher AW (2004) Food for the cities: urban agriculture in developing countries. Acta Hort 643:227–231CrossRefGoogle Scholar
  39. Dures SG, Cumming GS (2010) The confounding influence of homogenising invasive species in a globally endangered and largely urban biome: does habitat quality dominate avian biodiversity? Biol Conserv 143:768–777. doi: 10.1016/j.biocon.2009.12.019 CrossRefGoogle Scholar
  40. Dyderski MK, Gdula AK, Jagodziński AM (2015) “The rich get richer” concept in riparian woody species—a case study of the Warta River Valley (Poznań, Poland). Urban For Urban Green 14:107–114. doi: 10.1016/j.ufug.2014.12.003 CrossRefGoogle Scholar
  41. Elmqvist T, Alfsen-Norodom C, Colding J (2008) Urban systems. In: Jørgensen SE, Fath BD (eds) Ecosystems vol. [5] of encyclopedia of ecology. Elsevier, Oxford, pp 3665–3672CrossRefGoogle Scholar
  42. Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (2013) Urbanisation, biodiversity and ecosystem services: challenges and opportunities. Springer, BaselCrossRefGoogle Scholar
  43. Elmqvist T, Setala H, Handel SN et al (2015) Benefits of restoring ecosystem services in urban areas. Curr Opin Environ Sustain 14:101–108. doi: 10.1016/j.cosust.2015.05.001 CrossRefGoogle Scholar
  44. Eviner VT, Garbach K, Baty JH, Hoskinson SA (2012) Measuring the effects of invasive plants on ecosystem services: challenges and prospects. Invasive Plant Sci Manag 5:125–136. doi: 10.1614/IPSM-D-11-00095.1 CrossRefGoogle Scholar
  45. Foster J, Sandberg LA (2004) Friends of foe? Invasive species and public green space in Toronto. Geogr Rev 94:178–198CrossRefGoogle Scholar
  46. Gaertner M, Larson BMH, Irlich UM et al (2016) Managing invasive species in cities: a framework from Cape Town, South Africa. Landsc Urban Plan 151:1–9. doi: 10.1016/j.landurbplan.2016.03.010 CrossRefGoogle Scholar
  47. Gairola S, Bhatt A, Govender Y et al (2013) Incidence and intensity of tree infestation by the mistletoe Erianthemum dregei (Eckl. & Zeyh.) V. Tieghem in Durban, South Africa. Urban For Urban Green 12:315–322CrossRefGoogle Scholar
  48. Gaston KJ, Ávila-Jiménez ML, Edmondson JL (2013) REVIEW: managing urban ecosystems for goods and services. J Appl Ecol 50:830–840. doi: 10.1111/1365-2664.12087 CrossRefGoogle Scholar
  49. Gavier-pizarro AGI, Radeloff VC, Stewart SI et al (2010) Housing is positively associated with invasive exotic plant species richness in New England, USA. Ecol Appl 20:1913–1925. doi: 10.1890/09-2168.1 PubMedCrossRefGoogle Scholar
  50. Godefroid S (2001) Temporal analysis of the Brussels flora as indicator for changing environmental quality. Landsc Urban Plan 52:203–224. doi: 10.1016/S0169-2046(00)00117-1 CrossRefGoogle Scholar
  51. Grêt-Regamey A, Sirén E, Brunner SH, Weibel B (2016) Review of decision support tools to operationalize the ecosystem services concept. Ecosyst Serv. doi: 10.1016/j.ecoser.2016.10.012 Google Scholar
  52. Grove JM, Troy AR, O’Neil-Dunne JPM, Burch WR, Cadenasso ML Jr, Pickett STA (2006) Characterization of households and its implications for the vegetation of urban ecosystems. Ecosystems 9:578–597. doi: 10.1007/s10021-006-0116-z CrossRefGoogle Scholar
  53. Guitart D, Pickering C, Byrne J (2012) Past results and future directions in urban community gardens research. Urban For Urban Green 11:364–373. doi: 10.1016/j.ufug.2012.06.007 CrossRefGoogle Scholar
  54. Guo Q, Qian H, Ricklefs R, Xi W (2006) Distributions of exotic plants in eastern Asia and North America. Ecol Lett 9:827–834. doi: 10.1111/j.1461-0248.2006.00938.x PubMedCrossRefGoogle Scholar
  55. Haase D, Frantzeskaki N, Elmqvist T (2014) Ecosystem services in urban landscapes: practical applications and governance implications. Ambio 43:407–412. doi: 10.1007/s13280-014-0503-1 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Haines-Young R, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelii DG, Frid CLJ (eds) Ecosystem ecology: a new synthesis. Cambridge University Press, Cambridge, pp 110–139CrossRefGoogle Scholar
  57. Hobbs RJ, Higgs ES, Hall CM (eds) (2013) Defining novel ecosystems. In: Novel ecosystems: intervening in the new ecological world order. Wiley, Chichester, pp 58–60CrossRefGoogle Scholar
  58. Hope D, Gries C, Casagrande D et al (2006) Drivers of spatial variation in plant diversity across the central Arizona–Phoenix ecosystem. Soc Nat Resour 19:101–116. doi: 10.1080/08941920500394469 CrossRefGoogle Scholar
  59. Huebner CD, Nowak DJ, Pouyat RV, Bodine AR (2012) Nonnative invasive plants: maintaining biotic and socioeconomic integrity along the urban–rural–natural gradient. In: Laband DN, Lockaby BG, Zipperer W (eds) Urban–rural interfaces: linking people and nature. American Society of Agronomy, Soil Science Society of America, Madison, pp 71–98. doi: 10.2136/2012.urban-rural.c5 Google Scholar
  60. Hui C, Richardson DM, Visser V (2017) Ranking of invasive spread through urban green areas in the world’s 100 most populous cities. Biol Invasions. doi: 10.1007/s10530-017-1584-0 Google Scholar
  61. Hulme PE, Brundu G, Carboni M et al (2017) Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. J Appl Ecol 00:1–7. doi: 10.1111/1365-2664.12953 Google Scholar
  62. Hynes P, Howe G (2004) Urban horticulture in the contemporary united states: personal and community benefits. Acta Hortic 643:171–181. doi: 10.17660/ActaHortic.2004.643.21 CrossRefGoogle Scholar
  63. Irlich UM, Potgieter LJ, Stafford L, Gaertner M (2017) Recommendations for municipalities to become compliant with national legislation on biological invasions. Bothalia 47(2):a2156. doi: 10.4102/abc.v47i2.2156 CrossRefGoogle Scholar
  64. Johnston M, Nail S, James S (2012) ‘Natives versus aliens’: the relevance of the debate to urban forest management in Britain. In: Johnston M., Percival G, (eds) Trees, people and the built environment. Proceedings of the urban trees research conference, Birmingham, UK, pp 181–191Google Scholar
  65. Kabisch N, Frantzeskaki N, Pauleit S, Naumann S, Davis M, Artmann M, Haase D, Knapp S, Korn H, Stadler J, Zaunberger K, Bonn A (2016) Nature-based solutions to climate change mitigation and adaptation in urban areas—perspectives on indicators, knowledge gaps, barriers and opportunities for action. Ecol Soc 21(2):39. doi: 10.5751/ES-08373-210239 CrossRefGoogle Scholar
  66. Klotz S, Kühn I (2010) Urbanisation and alien invasion. In: Gaston KJ (ed) Urban ecology. Cambridge University Press, Cambridge, pp 120–133CrossRefGoogle Scholar
  67. Kowarik I (1995) On the role of alien species in urban flora and vegetation. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions—general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 85–103Google Scholar
  68. Kowarik I (2003) Human agency in biological invasions: secondary releases foster naturalisation and population expansion of alien plant species. Biol Invasions 5:293–312. doi: 10.1023/B:BINV.0000005574.15074.66 Google Scholar
  69. Kowarik I (2005) Urban ornamentals escaped from cultivation. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 97–121. doi: 10.1201/9781420037999.ch7 CrossRefGoogle Scholar
  70. Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol Evol Syst 8:207–237. doi: 10.1016/j.ppees.2007.03.002 CrossRefGoogle Scholar
  71. Kowarik I, Von Der Lippe M, Cierjacks A (2013) Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. Preslia 85:113–132Google Scholar
  72. Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479. doi: 10.1111/j.1461-0248.2005.00751.x PubMedCrossRefGoogle Scholar
  73. Kueffer C, Kull CA (2017) Non-native species and the aesthetics of nature. In: Vilà M, Hulme PE, Ruiz G (eds) Impact of biological invasions on ecosystem services. Springer, New York, pp 311–324CrossRefGoogle Scholar
  74. Kueffer C, Pysek P, Richardson DM (2013) Integrative invasion science: model organisms, multi-site studies, unbiased meta-analysis, and invasion syndromes (Tansley review). New Phytol 200:615–633PubMedCrossRefGoogle Scholar
  75. Kühn I, Klotz S (2006) Urbanization and homogeni-zation—comparing the floras of urban and rural areas in Germany. Biol Conserv 127:292–300. doi: 10.1016/j.biocon.2005.06.033 CrossRefGoogle Scholar
  76. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764Google Scholar
  77. Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P et al (2014) Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience 65:55–63CrossRefGoogle Scholar
  78. Luck GW, Harrington R, Harrison PA et al (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59:223–235. doi: 10.1025/bio.2009.59.3.7 CrossRefGoogle Scholar
  79. Luederitz C, Brink E, Gralla F et al (2015) A review of urban ecosystem services: six key challenges for future research. Ecosyst Serv 14:98–112. doi: 10.1016/j.ecoser.2015.05.001 CrossRefGoogle Scholar
  80. Mao Q, Ma K, Jianguo W, Rongli T, Shanghua L, Yuxin Z, Le B (2013) Distribution pattern of allergenic plants in the Beijing metropolitan region. Aerobiologia 29(2):217–231CrossRefGoogle Scholar
  81. Marozas V, Cekstere G, Laivins M, Straigyte L (2015) Comparison of neophyte communities of Robinia pseudoacacia L. and Acer negundo L. in the eastern Baltic Sea region cities of Riga and Kaunas. Urban For Urban Green 14:826–834CrossRefGoogle Scholar
  82. Maxwell D, Levin C, Csete J (1998) Does urban agriculture help prevent malnutrition? Evidence from Kampala. Food Policy 23:411–424CrossRefGoogle Scholar
  83. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890CrossRefGoogle Scholar
  84. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi: 10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  85. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi: 10.1016/S0169-5347(99)01679-1 PubMedCrossRefGoogle Scholar
  86. McLean P, Gallien L, Wilson JRU, Gaertner M, Richardson DM (2017) Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. Biol Invasions. doi: 10.1007/s10530-017-1600-4 Google Scholar
  87. Millard A (2008) Semi-natural vegetation and its relationship to designated urban green space at the landscape scale in Leeds, UK. Landsc Ecol 23:1231–1241. doi: 10.1007/s10980-008-9256-1 CrossRefGoogle Scholar
  88. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, Washington, D.C.Google Scholar
  89. Millward AA, Sabir S (2011) Benefits of a forested urban park: what is the value of Allan Gardens to the city of Toronto, Canada? Landsc Urban Plan 100:177–188. doi: 10.1016/j.landurbplan.2010.11.013 CrossRefGoogle Scholar
  90. Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–997PubMedPubMedCentralCrossRefGoogle Scholar
  91. Moodley D, Geerts S, Richardson DM, Wilson JRU (2013) Different traits determine introduction, naturalization and invasion success in woody plants: proteaceae as a test case. PLoS ONE 8(9):e75078. doi: 10.1371/journal.pone.0075078 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mooney HA (2005) Invasive alien species: the nature of the problem. In: Mooney HA et al (eds) Invasive alien species. Island Press, Washington DC, pp 1–15Google Scholar
  93. Moser A, Rötzer T, Pauleit S, Pretzsch H (2015) Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.) in urban environments. Urban For Urban Green 14:1110–1121. doi: 10.1016/j.ufug.2015.10.005 CrossRefGoogle Scholar
  94. Noe SM, Peñuelas J, Niinemets Ü (2008) Monoterpene emissions from ornamental trees in urban areas: a case study of Barcelona, Spain. Plant Biol 10:163–169. doi: 10.1111/j.1438-8677.2007.00014.x PubMedCrossRefGoogle Scholar
  95. OECD (2015) The metropolitan century: understanding urbanisation and its consequences. OECD Publishing, Paris. doi: 10.1787/9789264228733-en Google Scholar
  96. Padayachee AL, Irlich UM, Faulkner KT, Gaertner M, Procheş S, Wilson JRU, Rouget M (2017) How do invasive species travel to and through urban environments? Biol Invasions. doi: 10.1007/s10530-017-1596-9 Google Scholar
  97. Pauchard A, Aguayo M, Peña E, Urrutia R (2006) Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepcion, Chile). Biol Conserv 127:272–281. doi: 10.1016/j.biocon.2005.05.015 CrossRefGoogle Scholar
  98. Pickett STA, Cadenasso ML, Grove JM et al (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157. doi: 10.1007/978-0-387-73412-5_7 CrossRefGoogle Scholar
  99. Pimentel D, McNair S, Janecka J et al (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20. doi: 10.1016/S0167-8809(00)00178-X CrossRefGoogle Scholar
  100. Piracha AL, Marcotullio PJ (2003) Urban ecosystem analysis: identifying tools and methods. United Nations University Institute for Advanced Studies, TokyoGoogle Scholar
  101. Potgieter LJ, Richardson DM, Wilson JRU (2014) Casuarina: biogeography and ecology of an important tree genus in a changing world. Biol Invasions 16:609–633. doi: 10.1007/s10530-013-0613-x CrossRefGoogle Scholar
  102. Pyšek P (1998) Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25:155–163CrossRefGoogle Scholar
  103. Pyšek P, Richardson DM (2010) Invasive species, environmental change, and health. Annu Rev Environ Resour 35:25–55. doi: 10.1146/annurev-environ-033009-095548 CrossRefGoogle Scholar
  104. Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737. doi: 10.1111/j.1365-2486.2011.02636.x CrossRefGoogle Scholar
  105. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51:103–113CrossRefGoogle Scholar
  106. Richardson DM, Pyšek P, Carlton JT (2011) A compendium of essential concepts and terminology in invasion ecology. In: Richardson DM (ed) Fifty years of invasion ecology. The legacy of Charles Elton. Wiley, Oxford, pp 409–420Google Scholar
  107. Rodriguez JP et al (2006) Trade-offs across space, time, and ecosystem services. Ecol Soc 11(1):28CrossRefGoogle Scholar
  108. Roy S, Byrne J, Pickering C (2012) A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For Urban Green 4(11):351–363CrossRefGoogle Scholar
  109. Scott M, Lennon M, Haase D, Kazmierczak A, Clabby G, Beatley T (2016) Nature-based solutions for the contemporary city. Plan Theory Prac 17:267–300CrossRefGoogle Scholar
  110. Shackleton RT, Le Maitre DC, Pasiecznik NM, Richardson DM (2014) Prosopis: A global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6: plu027.
  111. Shackleton CM, Ruwanza S, Sinasson Sanni GK et al (2016) Unpacking Pandora’s box: understanding and categorising ecosystem disservices for environmental management and human wellbeing. Ecosystems 19:587–600. doi: 10.1007/s10021-015-9952-z CrossRefGoogle Scholar
  112. Sjöman H, Morgenroth J, Sjöman JD, Sæbø A, Kowarik I (2016) Diversification of the urban forest—can we afford to exclude exotic tree species? Urban For Urban Green 18:237–241CrossRefGoogle Scholar
  113. Sladonja B, Sušek M, Guillermic J (2015) Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environ Manage 56:1009–1034. doi: 10.1007/s00267-015-0546-5 PubMedCrossRefGoogle Scholar
  114. Smith RM, Thompson K, Hodgson JG et al (2006) Urban domestic gardens (IX): composition and richness of the vascular plant flora, and implications for native biodiversity. Biol Conserv 129:312–322. doi: 10.1016/j.biocon.2005.10.045 CrossRefGoogle Scholar
  115. Song IJ, Hong SK, Kim HO et al (2005) The pattern of landscape patches and invasion of naturalized plants in developed areas of urban Seoul. Landsc Urban Plan 70:205–219. doi: 10.1016/j.landurbplan.2003.10.018 CrossRefGoogle Scholar
  116. Štajerová K, Šmilauer P, Brůna J, Pyšek P (2017) Distribution of invasive plants in urban environment is strongly spatially structured. Landsc Ecol 32:681–692CrossRefGoogle Scholar
  117. Sullivan JJ, Timmins SM, Williams PA (2005) Movement of exotic plants into coastal native forestsfrom gardens in northern New Zealand. N Z J Ecol 29:1–10Google Scholar
  118. Tratalos J, Fuller RA, Warren PH, Davies RG, Gaston KJ (2007) Urban form, biodiversity potential and ecosystem services. Landsc Urban Plan 83:308–317CrossRefGoogle Scholar
  119. UNFPA (2007) State of the world population 2007: unleashing the potential of urban growth. United Nations Population Fund, New YorkCrossRefGoogle Scholar
  120. United Nations (2017) World Economic Situation and Prospects (WESP). United Nations publication. Accessed 18 October 2016
  121. Van Wilgen NJ, Richardson DM, Baard EHW (2008) Alien reptiles and amphibians in South Africa: towards a pragmatic management strategy. S Afr J Sci 104:13–20Google Scholar
  122. Vaz AS, Kueffer C, Kull CA et al (2017a) Integrating ecosystem services and disservices: insights from plant invasions. Ecosyst Serv 23:94–107. doi: 10.1016/j.ecoser.2016.11.017 CrossRefGoogle Scholar
  123. Vaz AS, Kueffer C, Kull CA et al (2017b) The progress of interdisciplinarity in invasion science. Ambio 46:428–442PubMedCrossRefGoogle Scholar
  124. Von Der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996. doi: 10.1111/j.1523-1739.2007.00722.x PubMedCrossRefGoogle Scholar
  125. Von Döhren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecol Indic 52:490–497. doi: 10.1016/j.ecolind.2014.12.027 CrossRefGoogle Scholar
  126. Walker GA, Robertson MP, Gaertner M, Gallien L, Richardson DM (2017) The potential range of Ailanthus altissima (tree of heaven) in South Africa: the roles of climate, land use and disturbance. Biol Invasions. doi: 10.1007/s10530-017-1597-8 Google Scholar
  127. Wania A, Kühn I, Klotz S (2006) Plant richness patterns in agricultural and urban landscapes in central Germany—spatial gradients of species richness. Landsc Urban Plan 75:97–110. doi: 10.1016/j.landurbplan.2004.12.006 CrossRefGoogle Scholar
  128. Williams NSG, Hahs AK, Vesk PA (2015) Urbanisation, plant traits and the composition of urban floras. Perspect Plant Ecol Evol Syst 17:78–86. doi: 10.1016/j.ppees.2014.10.002 CrossRefGoogle Scholar
  129. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666. doi: 10.2307/2265769 CrossRefGoogle Scholar
  130. Winklerprins AMGA, de Souze P (2005) Surviving the city: urban home gardens and the economy of affection in the Brazilian Amazon. J Lat Am Geogr 4:107–126. doi: 10.1353/lag.2005.0033 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Nürtingen-Geislingen University of Applied Sciences (HFWU)NürtingenGermany
  3. 3.Institute of Integrative Biology, Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  4. 4.School of Environment, Resources and SustainabilityUniversity of WaterlooWaterlooCanada
  5. 5.Department of Physical Environmental SciencesUniversity of Toronto-ScarboroughTorontoCanada
  6. 6.Natural Resources and Environment CSIRStellenboschSouth Africa
  7. 7.Percy FitzPatrick Institute of African OrnithologyUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations