Biological Invasions

, Volume 20, Issue 3, pp 793–807 | Cite as

Contrasting effects of invasive rabbits on endemic plants driving vegetation change in a subtropical alpine insular environment

  • Jonay Cubas
  • José Luis Martín-Esquivel
  • Manuel Nogales
  • Severin D. H. Irl
  • Raquel Hernández-Hernández
  • Marta López-Darias
  • Manuel Marrero-Gómez
  • Marcelino J. del Arco
  • Juana María González-Mancebo
Original Paper


Alpine ecosystems on islands are among the most isolated on Earth, leading to very high rates of endemism. Endemic species on oceanic islands are particularly vulnerable to invasive herbivores. In the alpine zone of Tenerife, which harbors a unique endemic flora, the dominance pattern of the two most dominant species in our days (Spartocytisus supranubius and Pterocephalus lasiospermus) has shifted in the last few decades, which may be a result of increasing rabbit pressure. In this study we explore how rabbits affect the population structure, soil nutrient composition and regeneration of our two target endemics within Teide National Park. For this purpose, we established 90 plots at 30 locations. Within 13 locations we sampled permanent exclosure plots that were established between 7 and 12 years before sampling, applying three treatments (full herbivory, rabbit herbivory and no herbivory). At one site we collected 80 soil samples to evaluate changes in soil chemistry and plant growth using a greenhouse experiment. Our results show that rabbits have a negative effect on the population structure of S. supranubius, while the contrary occurs with P. lasiospermus. Rabbit presence alters soil chemistry leading to a decline in nitrogen, which affects growth in both species. The presence of rabbits leads to a dominance shift in these two keystone endemic species, altering dominance patterns in the summit scrub of Tenerife. The decline of S. supranubius could represent the example of many endemic species of this system. Thus, we call for an immediate control of rabbit population (< 0.5 rabbits/ha) to protect this unique alpine endemic flora.


Conservation Density-damage relationship El Teide National Park Exclosure experiment Oryctolagus cuniculus Vegetation dynamic 



We thank Julio Leal Pérez, Alexandra Rodríguez-Romero, Josué Álvarez and Víctor Bello-Rodríguez for their great assistance assembling the plots and quadrats, and taking data in the field. Also Julien Piquet, Natalia Díaz Cristina Jiménez Gomís and Ministerio del Interior (army), for their help in some part of the field work. We also thank the Ministerio de Agricultura, Alimentation y Medio Ambiente (REF 1621/2015) for the financial support and the service of El Teide National Park provided use with all kind of facilities for development of this study. Jonay Cubas holds a PhD studentship from La Laguna University.

Supplementary material

10530_2017_1576_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 kb)


  1. Acebes JR, León MC, Rodríguez L, Del Arco M, García A, Pérez de Paz PL, Rodríguez O, Martín VE, Wildpret W (2010) Pteridophyta, Spermatophyta In: Arechavaleta M, Rodríguez, S., Zurita, N. & García, A. (coord.) (eds) Lista de especies silvestres de Canarias Hongos, plantas y animales terrestres 2009. Gobierno de Canarias, pp 119–172Google Scholar
  2. Alexander JM, Lembrechts JJ, Cavieres LA, Daehler C, Haider S, Kueffer C, Liu G, McDougall K, Milbau A, Pauchard A, Rew LJ, Seipel T (2016) Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp Bot 126:89–103. doi: 10.1007/s00035-016-0172-8 CrossRefGoogle Scholar
  3. Bazely D, Jefferies R (1986) Changes in the composition and standing crop of salt-marsh communities in response to the removal of a grazer. J Ecol 74:693–706CrossRefGoogle Scholar
  4. Blackburn T, Cassey P, Duncan R, Evans K, Gaston K (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958CrossRefPubMedGoogle Scholar
  5. Bowen L, Vuren DV (1997) Insular endemic plants lack defenses against herbivores. Conserv Biol 11:1249–1254CrossRefGoogle Scholar
  6. Chala D, Zimmermann NE, Brochmann C, Bakkestuen V (2017) Migration corridors for alpine plants among the ‘sky islands’ of eastern Africa: do they, or did they exist? Alp Bot. doi: 10.1007/s00035-017-0184-z Google Scholar
  7. Cooke B, McPhee S (2007) Rabbits and Native Plant Biodiversity. A report complied for Australian Wool Innovation and Meat and Livestock Australia as part of the Invasive Animals Co-operative Research Centre Project 7.T. 6—Biodiversity Impact of Rabbits. Australia, pp 42Google Scholar
  8. Cooke B, McPhee, S, Quentin H (2008) Rabbits: a threat to conservation and natural resource management. How to rapidly assess a rabbit problem and take action, pp 16Google Scholar
  9. Courchamp F, Chapuis JL, Pascal M (2003) Mammal invaders on islands: impact, control and control impacts. Biol Rev 78:347–383CrossRefPubMedGoogle Scholar
  10. De Abreu Galindo J (1977) Historia de la conquista de las siete islas de Canarias. Santa Cruz de Tenerife, EspañaGoogle Scholar
  11. Del Arco M, Wildpret W, Pérez De Paz PL, Rodríguez O, Acebes JR, García-Gallo A, Martín VE, Reyes-Betancort JA, Salas M, Bermejo JA, González R, Cabrera MV, García S (2006) Mapa de Vegetación de Canarias. GRAFCAN, Santa Cruz de TenerifeGoogle Scholar
  12. Delibes-Mateos M, Delibes M, Ferreras P, Villafuerte R (2008) Key role of European rabbits in the conservation of the Western Mediterranean basin hotspot. Conserv Biol 22:1106–1117CrossRefPubMedGoogle Scholar
  13. Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20:470–474. doi: 10.1016/j.tree.2005.07.006 CrossRefPubMedGoogle Scholar
  14. Eberhardt L, Van Etten R (1956) Evaluation of de pellet group count as a deer census method. J Wildl Manag 20:70–74CrossRefGoogle Scholar
  15. Eldridge DJ, Koen TB (2008) Formation of nutrient-poor soil patches in a semi-arid woodland by the European rabbit (Oryctolagus cuniculus L.). Austral Ecol 33:88–98. doi: 10.1111/j.1442-9993.2007.01793.x CrossRefGoogle Scholar
  16. Eldridge DJ, Myers CA (2001) The impact of warrens of the European rabbit (Oryctolagus cuniculus L.) on soil and ecological processes in a semi-arid Australian woodland. J Arid Environ 47:325–337CrossRefGoogle Scholar
  17. Eldridge DJ, Costantinides C, Vine A (2006) Short-term vegetation and soil responses to mechanical destruction of rabbit (Oryctolagus cuniculus L.) warrens in an Australian Box Woodland. Restor Ecol 14:50–59. doi: 10.1111/j.1526-100X.2006.00104.x CrossRefGoogle Scholar
  18. Expósito FJ, González A, Pérez JC, Díaz JP, Taima D (2015) High-resolution future projections of temperature and precipitation in the Canary Islands. J Clim 28:7846–7856CrossRefGoogle Scholar
  19. Fernández-de-Simón J, Díaz-Ruiz F, Cirilli F, Tortosa FS, Villafuerte R, Delibes-Mateos M, Ferreras P (2011) Towards a standardized index of European rabbit abundance in Iberian Mediterranean habitats. Eur J Wildl Res 57:1091–1100CrossRefGoogle Scholar
  20. Fernández-Palacios J, Whittaker R (2008) The Canaries: an important biogeographical meeting place. J Biogeogr 35:379–387CrossRefGoogle Scholar
  21. Fernández-Palacios JM, Otto R, Thebaud C, Price J (2014) Overview of habitat history in subtropical oceanic island summit ecosystems. Arct Antarct Alp Res 46:801–809CrossRefGoogle Scholar
  22. Flux JC, Fullagar P (1992) World distribution of the rabbit Oryctolagus cuniculus on islands. Mamm Rev 22:151–205CrossRefGoogle Scholar
  23. Fraser KW (1988) Reproductive biology of rabbits, Oryctolagus cuniculus (L.), in central Otago, New Zealand. N Z J Ecol 11:79–88Google Scholar
  24. Garzón Machado V, González-Mancebo JM, Palomares A, Acevedo A, Fernández-Palacios JM, Del Arco M, Pérez de Paz PL (2010) Strong negative effect of alien herbivores on endemic legumes of the Canary pine forest. Biol Conserv 143:2685–2694CrossRefGoogle Scholar
  25. Gough L (2010) The spatial ecology of an endemic desert shrub. University of NottinghamGoogle Scholar
  26. Harter DEV, Irl SDH, Seo B, Steinbauer MJ, Gillespie R, Triantis KA, Fernández-Palacios J-M, Beierkuhnlein C (2015) Impacts of global climate change on the floras of oceanic islands—Projections, implications and current knowledge. Perspect Plant Ecol Evol Syst 17:160–183CrossRefGoogle Scholar
  27. Hemdorff J. (2013) An ecological networks analysis of Las Cañadas. Master Thesis. Department of Bioscience: Genetics and Ecology. Aarhus UniversityGoogle Scholar
  28. Irl SDH, Steinbauer MJ, Babel W, Beierkuhnlein C, Blume-Werry G, Messinger J, Palomares Martínez A, Strohmeier S, Jentsch A (2012) An 11-yr exclosure experiment in a high-elevation island ecosystem: introduced herbivore impact on shrub species richness, seedling recruitment and population dynamics. J Veg Sci 23:1114–1125CrossRefGoogle Scholar
  29. Irl SDH, Jentsch A, Walther GR (2013) Papaver croceum LEDEB: a rare example of an alien species in alpine environments of the Upper Engadine, Switzerland. Alp Bot 123:21–30CrossRefGoogle Scholar
  30. Irl SDH, Steinbauer MJ, Messinger J, Blume-Werry G, Palomares-Martínez Á, Beierkuhnlein C, Jentsch A (2014) Burned and devoured-introduced herbivores, fire, and the endemic flora of the high-elevation ecosystem on La Palma, Canary Islands. Arct Antarct Alp Res 46:859–869CrossRefGoogle Scholar
  31. Irl SDH, Harter DEV, Steinbauer MJ, Gallego Puyol D, Fernández-Palacios JM, Jentsch A, Beierkuhnlein C (2015) Climate vs. topography—spatial patterns of plant species diversity and endemism on a high-elevation island. J Ecol 103:1621–1633CrossRefGoogle Scholar
  32. Irl SDH, Schweiger AH, Medina FM, Fernández-Palacios JM, Harter DEV, Jentsch A, Provenzale A, Steinbauer MJ, Beierkuhnlein C (2017) An island view of endemic rarity—Environmental drivers and consequences for nature conservation. Divers Distrib 23:1132–1142CrossRefGoogle Scholar
  33. Köhler L, Gieger T, Leuschner C (2006) Altitudinal change in soil and foliar nutrient concentrations and in microclimate across the tree line on the subtropical island mountain Mt. Teide (Canary Islands). Flora Morphol Distrib Funct Ecol Plants 201:202–214CrossRefGoogle Scholar
  34. Kyncl T, Suda J, Wild J, Wildová R, Herben T (2006) Population dynamics and clonal growth of Spartocytisus supranubius (Fabaceae), a dominant shrub in the alpine zone of Tenerife, Canary Islands. Plant Ecol 186:97–108CrossRefGoogle Scholar
  35. Lowe S, Browne M, Boudjelas S, De Poorter M (2004) 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database. In: The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). New Zealand, pp 12Google Scholar
  36. MAPA (1994) Métodos oficiales de análisis (Tomo III). MadridGoogle Scholar
  37. Marrero-Gómez M, Oostermeijer JGB, Carqué-Álamo E, Bañares-Baudet A (2007) Population viability of the narrow endemic Helianthemum juliae (Cistaceae) in relation to climate variability. Biol Cons 136:552–562CrossRefGoogle Scholar
  38. Martín JL (2009) Are the IUCN standard home-range thresholds for species a good indicator to prioritise conservation urgency in small islands? A case study in the Canary Islands (Spain). J Nat Conserv 17:87–98CrossRefGoogle Scholar
  39. Martin J, Marrero M, del Arco M, Garzón V (2015) Aspectos clave para un plan de adaptación de la biodiversidad terrestre de Canarias al cambio climático. In: Los bosques y la biodiversidad frente al cambio climático: Impactos, vulnerabilidad y adaptación en España. Herrero, A (eds) pp 573–580Google Scholar
  40. Martín J, Bethencourt J, Cuevas-Agulló E (2012) Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Clim Change 114:343–355CrossRefGoogle Scholar
  41. McIntosh P, Allen R (1998) Effect of exclosure on soil, biomass, plant nutrients, and vegetation, on unfertilised steplands, Upper Waitaki district, South Island, New Zealand. N Z J Ecol 22:209–217Google Scholar
  42. Mutze G, Cooke B, Lethbridge M, Jennings S (2014) A rapid survey method for estimating population density of European rabbits living in native vegetation. Rangel J 36:239–247CrossRefGoogle Scholar
  43. Mutze G, Cooke B, Jennings S (2016) Estimating density-dependent impacts of European rabbits on Australian tree and shrub populations. Aust J Bot 64:142–152CrossRefGoogle Scholar
  44. Nogales M, Valido A, Medina FM (1995) Frugivory of Plocama pendula (Rubiaceae) by the Rabbit (Oryctolagus cuniculus) in xerophytic zones of Tenerife (Canary Islands). Acta Ecol 16:585–591Google Scholar
  45. Nogales M, Nieves C, Illera JC, Padilla DP, Traveset A (2005) Effect of native and alien vertebrate frugivores on seed viability and germination patterns of Rubia fruticosa (Rubiaceae) in the eastern Canary Islands. Funct Ecol 19:429–436CrossRefGoogle Scholar
  46. Nogales M, Rodríguez JL, Marrero P (2006) Ecological effects and distribution of invasive non-native mammals on the Canary Islands. Mamm Rev 36:49–65CrossRefGoogle Scholar
  47. Olofsson J, Mazancourt C, Crawley M (2007) Contrasting effects of rabbit exclusion on nutrient availability and primary production in grasslands at different time scales. Oecologia 150:582–589CrossRefPubMedGoogle Scholar
  48. Parsons MA, Barkley TC, Rachlow JL, Johnson-Maynard JL, Johnson TR, Milling CR, Hammel JE, Leslie I (2016) Cumulative effects of an herbivorous ecosystem engineer in a heterogeneous landscape. Ecosphere 7:e01334. doi: 10.1002/ecs2.1334 CrossRefGoogle Scholar
  49. Perera-Castro AV, Brito P, González-Rodríguez AM (2017) Changes in thermic limits and acclimation assessment for an alpine plant by chlorophyll fluorescence analysis: Fv/Fm vs. Rfd. Photosynthetica. doi: 10.1007/s11099-017-0691-6 Google Scholar
  50. Pérez MAG, Polifrone M, Marrero-Gómez M, Bañares A, Sosa PA (2015) Are genetic data relevant in the conservation of species in imminent danger? The case of a critically endangered endemism from the Canary Islands Helianthemum juliae Wildpret (Cistaceae). Plant Syst Evol 301(7):1807–1818CrossRefGoogle Scholar
  51. Rocha R, Sequeira MM, Douglas LR, Gouveia M, Jardim R, Jesus J, Jones HP, Russo D (2017) Extinctions of introduced game species on oceanic islands: curse for hunters or conservation opportunities? Biodivers Conserv. doi: 10.1007/s10531-017-1363-3 Google Scholar
  52. Rodríguez-Delgado O, Roselló E (2006) Evolución del paisaje vegetal del Parque Nacional del Teide. Ministerio de Medio AmbienteGoogle Scholar
  53. Roemer G, Donlan C, Courchamp F (2002) Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. PNAS 99:791–796CrossRefPubMedGoogle Scholar
  54. Santana B, Martín JL (2013) Catálogo de mapas climáticos de Gran Canaria y Tenerife—Tomo 2. Proyecto Clima-Impacto (MAC/3/C159). Viceconsejería de Medio Ambiente del Gobierno de Canarias pp 135Google Scholar
  55. Seguí J, López-Darias M, Pérez AJ, Nogales M, Traveset A (2017) Species–environment interactions changed by introduced herbivores in an oceanic high-mountain ecosystem. AoB Plants 9:plw09. doi: 10.1093/aobpla/plw091 Google Scholar
  56. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  57. Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66CrossRefPubMedGoogle Scholar
  58. Sirotnak J, Huntly N (2000) Direct and indirect effects of herbivore on nitrogen dynamics: voles in riparian areas. Ecology 8:78–87CrossRefGoogle Scholar
  59. Smith AT, Boyer AF (2008) Oryctolagus cuniculus. The IUCN Red List of Threatened Species 2008: e.T41291A10415170Google Scholar
  60. Steinbauer MJ, Otto R, Naranjo-Cigala A, Beierkuhnlein C, Fernández-Palacios JM (2012) Increase of island endemism with altitude—speciation processes on oceanic islands. Ecography 35:23–32CrossRefGoogle Scholar
  61. Steinbauer MJ, Irl SDH, Beierkuhnlein C (2013) Elevation-driven ecological isolation promotes diversification on Mediterranean islands. Acta Oecol 47:52–56CrossRefGoogle Scholar
  62. Steinbauer MJ, Irl SDH, González-Mancebo JM, Breiner FT, Hernández-Hernández R, Hopfenmüller S, Kidane Y, Jentsch A, Beierkuhnlein C (2016) Plant invasion and speciation along elevational gradients on the oceanic island La Palma, Canary Islands. Ecol Evol 7:771–779CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sventenius ER (1946) Notas sobre la flora de las Cañadas de Tenerife, (Cuaderno/INIA;78). Instituto de investigaciones agrarias, Centro de las islas Canarias, MadridGoogle Scholar
  64. Traveset A, Richardson D (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216CrossRefPubMedGoogle Scholar
  65. Vitousek PM, Harold A, Lubchenco J, Melillo JM (1997) Human Domination of Earth’s. Ecosystems. Science 277:494–499CrossRefGoogle Scholar
  66. Voggenreiter V (1975) Vertikalverbreitung der natürlischen und introduzierten Flora in der zentralen SW-Abdachung von Tenerife Monographiae Biologicae Canarienses 6Google Scholar
  67. Wheeler CT, Dickson JH (1990) Symbiotic nitrogen fixation and distribution of Spartocytisus supranubius on Las Cañadas, Tenerife. Vieraea 19:309–314Google Scholar
  68. Willott S, Miller A, Incoll L, Compton S (2000) The contribution of rabbits (Oryctolagus cuniculus L.) to soil fertility in semi-arid Spain. Biol Fertil Soils 31:379–384CrossRefGoogle Scholar
  69. Wood D (1988) Estimating Rabbit density by counting dung pellets. Aust Wildl Res 15:665–671CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jonay Cubas
    • 1
  • José Luis Martín-Esquivel
    • 2
  • Manuel Nogales
    • 3
  • Severin D. H. Irl
    • 4
  • Raquel Hernández-Hernández
    • 1
  • Marta López-Darias
    • 3
  • Manuel Marrero-Gómez
    • 2
  • Marcelino J. del Arco
    • 1
  • Juana María González-Mancebo
    • 1
  1. 1.Plant Conservation and Biogeography Research Group, Departamento de Botánica, Ecología y Fisiología VegetalUniversidad de La LagunaLa LagunaSpain
  2. 2.Parque Nacional del TeideLa OrotavaSpain
  3. 3.Island Ecology and Evolution Research Group (IPNA-CSIC)La LagunaSpain
  4. 4.Department of Biogeography, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany

Personalised recommendations