Biological Invasions

, Volume 20, Issue 3, pp 593–606 | Cite as

Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees

  • Zachary M. PortmanEmail author
  • Vincent J. Tepedino
  • Amber D. Tripodi
  • Allen L. Szalanski
  • Susan L. Durham
Original Paper


Twenty-five years ago, Arctomecon humilis, a pollinator-dependent, endangered poppy globally restricted to the extreme northeastern Mojave Desert in southwestern Utah, was pollinated by native bee species and the European honey bee. Follow-up studies beginning in 2012 failed to find the two most important native bee pollinator species, one of which, Perdita meconis, is a strict poppy specialist. We had four objectives: (1) confirm the status of formerly important native bee pollinators; (2) determine the role of the Africanized honey bee which reportedly invaded southern Utah in 2008; (3) examine the effect of the ostensible change in pollinator fauna on fruit set in four populations; (4) describe the pollination proficiency of species that presently visit poppy flowers. For the fourth consecutive survey, P. meconis was absent; its local extinction in Utah now seems certain. Another previously important native pollinator, Eucera quadricincta, was very rare. Also uncommon was the European honey bee, having been largely replaced by Africanized honey bees which have become, in most populations, the prevalent pollinator. Africanized bees forage early in the day and quickly strip flowers of their copious pollen leaving little for native bees. We argue that the invasion of southern Utah by Africanized bees is the most likely cause of the severe disruption of the A. humilis pollination system. The ascension of the Africanized bee is also associated with reduced fruit set in all poppy populations, especially those where plants are sparse. Arctomecon humilis now appears to depend mostly on an invasive species for pollination.


Endangered mutualism Oligolectic bee Endemic poppy Arctomecon Perdita 



This study was funded by the U.S. Fish and Wildlife Service (Grant F16AP00680) to ZP and VT and by National Science Foundation Graduate Research Fellowship Grant No. DGE-1147384 to ZP. Jena Lewinsohn, U.S. Fish and Wildlife Service, West Valley City UT, was instrumental in getting the project funded; it couldn’t have been done without her support. Elaine York, The Nature Conservancy, encouraged us to work at SK and granted permission to do so. As usual, Bob Douglas, Bureau of Land Management, St. George UT was helpful with logistics and unpublished information. We thank Skyler Burrows for help in the field and with identifications, Brian Rozick for creating occurrence maps, Harold “H” Ikerd for querying the USDA ARS PIRU database with his usual alacrity, James Pitts (Utah State Univ.) for identifying the thomisid, and Terry Griswold (PIRU) for lab facilities and specimen retention. Dr. Tripodi contributed to this article in her personal capacity. The views expressed are her own and do not necessarily represent the views of the Agricultural Research Service or the United States Government.

Supplementary material

10530_2017_1559_MOESM1_ESM.pdf (415 kb)
Supplementary material 1 (PDF 414 kb)


  1. Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. doi: 10.1016/j.cub.2009.03.071 CrossRefPubMedGoogle Scholar
  2. Alessa L, Chapin FS (2008) Anthropogenic biomes: a key contribution to earth-system science. Trends Ecol Evol 23:529–531. doi: 10.1016/j.tree.2008.07.002 CrossRefPubMedGoogle Scholar
  3. Baum KA, Tchakerian MD, Thoenes SC, Coulson RN (2008) Africanized honey bees in urban environments: a spatio-temporal analysis. Landsc Urban Plan 85:123–132. doi: 10.1016/j.landurbplan.2007.10.005 CrossRefGoogle Scholar
  4. Cane JH, Sipes SS (2006) Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago and London, pp 99–122Google Scholar
  5. Carneiro LT, Martins CF (2012) Africanized honey bees pollinate and preempt the pollen of Spondias mombin (Anacardiaceae) flowers. Apidologie 43:474–486. doi: 10.1007/s13592-011-0116-7 CrossRefGoogle Scholar
  6. Danforth BN (1999) Emergence dynamics and bet hedging in a desert bee, Perdita portalis. Proc R Soc B 266:1985–1994. doi: 10.1098/rspb.1999.0876 CrossRefPubMedCentralGoogle Scholar
  7. Danka RG, Hellmich RL, Rinderer TE, Collins AM (1987) Diet-selection ecology of tropically and temperately adapted honey bees. Anim Behav 35:1858–1863. doi: 10.1016/S0003-3472(87)80078-7 CrossRefGoogle Scholar
  8. Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606. doi: 10.1111/j.1466-8238.2010.00540.x Google Scholar
  9. Franzén M, Nilsson SG (2009) Both population size and patch quality affect local extinctions and colonizations. Proc R Soc B. doi: 10.1098/rspb.2009.1584 PubMedPubMedCentralGoogle Scholar
  10. Franzén M, Nilsson SG (2013) High population variability and source-sink dynamics in a solitary bee species. Ecology 94:1400–1408. doi: 10.1890/11-2260.1 CrossRefPubMedGoogle Scholar
  11. Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26. doi: 10.1146/132355 CrossRefGoogle Scholar
  12. Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596. doi: 10.1007/s00442-007-0752-9 CrossRefPubMedGoogle Scholar
  13. Griswold TL (1993) New species of Perdita (Pygoperdita) Timberlake of the P. californica species group (Hymenptera: Andrenidae). Pan-Pac Entomol 62:183–189Google Scholar
  14. Harper KT, Van Buren R (2004) Dynamics of a Dwarf Bear-poppy (Arctomecon humilis) population over a sixteen-year period. West North Am Nat 64:482–491Google Scholar
  15. Harper KT, Van Buren R, Aanderud ZT (2000) The influence of interplant distance and number of flowers on seed set in Dwarf Bear-poppy (Arctomecon humilis). In: Southwestern rare and endangered plants: proceedings of the third conference. USDA-Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, pp 105–109Google Scholar
  16. Harrison JF, Fewell JH, Anderson KE, Loper GM (2006) Environmental physiology of the invasion of the Americas by Africanized honeybees. Integr Comp Biol 46:1110–1122. doi: 10.1093/icb/icl046 CrossRefPubMedGoogle Scholar
  17. Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, BerlinCrossRefGoogle Scholar
  18. Hickerson LL (1998) The reproductive ecology, demography, and population genetic structure of Arctomecon californica Torrey & Fremont (Papaveraceae) in fragmented and unfragmented habitat. M.Sc. thesis, Utah State UniversityGoogle Scholar
  19. Hodgson EW, Stanley CA, Roe AH, Downey D (2010) Africanized honey bees. Utah Pests Fact Sheet ENT-20-09:1–4Google Scholar
  20. Kaiser-Bunbury CN, Traveset A, Hansen DM (2010) Conservation and restoration of plant-animal mutualisms on oceanic islands. Perspect Plant Ecol Evol Syst 12:131–143. doi: 10.1016/j.ppees.2009.10.002 CrossRefGoogle Scholar
  21. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112. doi: 10.1146/annurev.ecolsys.29.1.83 CrossRefGoogle Scholar
  22. Kiers TE, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474. doi: 10.1111/j.1461-0248.2010.01538.x CrossRefGoogle Scholar
  23. Knight TM, Chase JM, Hillebrand H, Holt RD (2006) Predation on mutualists can reduce the strength of trophic cascades. Ecol Lett 9:1173–1178. doi: 10.1111/j.1461-0248.2006.00967.x CrossRefPubMedGoogle Scholar
  24. Kono Y, Kohn JR (2015) Range and frequency of Africanized honey bees in California (USA). PLoS ONE 10:e0137407. doi: 10.1371/journal.pone.0137407 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Loper GM, Sammataro D, Finley J, Cole J (2006) Feral honey bees in southern Arizona, 10 years after varroa infestation. Am Bee J 146:521–524Google Scholar
  26. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi: 10.1016/S0169-5347(99)01679-1 CrossRefPubMedGoogle Scholar
  27. Medina-Flores CA, Guzmán-Novoa E, Hamiduzzaman MM, Aréchiga-Flores CF, López-Carlos MA (2014) Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. Genet Mol Res 13:7282–7293. doi: 10.4238/2014.February.21.10 CrossRefPubMedGoogle Scholar
  28. Minckley RL, Roulston TH (2006) Incidental mutualisms and pollen specialization among bees. In: Waser NM, Ollerton J (eds) Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 69–98Google Scholar
  29. Moilanen A (2002) Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96:516–530. doi: 10.1034/j.1600-0706.2002.960313.x CrossRefGoogle Scholar
  30. Moritz RFA, Härtel S, Neumann P (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12:289–301. doi: 10.2980/i1195-6860-12-3-289.1 CrossRefGoogle Scholar
  31. Norden BB, Krombein KV, Deyrup MA, Edirisinghe JP (2003) Biology and behavior of a seasonally aquatic bee, Perdita (Alloperdita) floridensis Timberlake (Hymenoptera: Andrenidae: Panurginae). J Kansas Entomol Soc 76:236–249Google Scholar
  32. Packer L, Zayed A, Grixti JC, Ruz L, Owen RE, Vivallo F, Toro H (2005) Conservation genetics of potentially endangered mutualisms: reduced levels of genetic variation in specialist versus generalist bees. Conserv Biol 19:195–202. doi: 10.1111/j.1523-1739.2005.00601.x CrossRefGoogle Scholar
  33. Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS (2005) Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics 170:1653–1665. doi: 10.1534/genetics.104.035030 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pirk CWW, Crewe RM, Moritz RFA (2017) Risks and benefits of the biological interface between managed and wild bee pollinators. Funct Ecol 31:47–55. doi: 10.1111/1365-2435.12768 CrossRefGoogle Scholar
  35. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  36. Rabe MJ, Rosenstock SS, Nielsen DI (2005) Feral africanized honey bees (Apis mellifera) in Sonoran Desert habitats of southwestern Arizona. Southwest Nat 50:307–311. doi: 10.1894/0038-4909(2005)050[0307:FAHBAM]2.0.CO;2 CrossRefGoogle Scholar
  37. Rangel J, Giresi M, Pinto MA, Baum KA, Rubink WL, Coulson RN, Johnston JS (2016) Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference? Ecol Evol 6:2158–2169. doi: 10.1002/ece3.1974 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Romero GQ, Antiqueira PAP, Koricheva J (2011) A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6:e20689. doi: 10.1371/journal.pone.0020689 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Roubik DW (2009) Ecological impact on native bees by the invasive Africanized honey bee. Acta Biol Columbiana 14:115–124Google Scholar
  40. Roubik DW, Villanueva-Gutiérrez R (2009) Invasive Africanized honey bee impact on native solitary bees: a pollen resource and trap nest analysis. Biol J Linn Soc 98:152–160. doi: 10.1111/j.1095-8312.2009.01275.x CrossRefGoogle Scholar
  41. Roubik DW, Wolda H (2001) Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Popul Ecol 43:53–62. doi: 10.1007/PL00012016 CrossRefGoogle Scholar
  42. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  43. Schwarzbach A, Kadereit J (1999) Phylogeny of prickly poppies, Argemone (Papaveraceae), and the evolution of morphological and alkaloid characters based on ITS nrDNA sequence variation. Plant Syst Evol 218:257–279. doi: 10.1007/BF01089231 CrossRefGoogle Scholar
  44. Severns PM, Moldenke AR (2010) Management tradeoffs between focal species and biodiversity: endemic plant conservation and solitary bee extinction. Biodivers Conserv 19:3605–3609. doi: 10.1007/s10531-010-9897-7 CrossRefGoogle Scholar
  45. Silva DM, De Jong D (1990) Diurnal flight activity of Africanized and European honey bees. Apiacta 25:78–80Google Scholar
  46. Szalanski AL, Mckern JA (2007) Multiplex PCR-RFLP diagnostics of the Africanized honey bee (Hymenoptera: Apidae). Sociobiology 50:939–946Google Scholar
  47. Szalanski AL, Tripodi AD (2014) Assessing the utility of a PCR diagnostics marker for the identification of Africanized honey bee, Apis mellifera L., (Hymenoptera: Apidae) in the United States. Sociobiology 61:218–220. doi: 10.13102/sociobiology.v61i2.234-236 CrossRefGoogle Scholar
  48. Tepedino VJ (1979) The importance of bees and other insect pollinators in maintaining floral species composition. Gt Basin Nat Mem 3:139–150Google Scholar
  49. Tepedino VJ, Mull J, Griswold TL, Bryant G (2014) Reproduction and pollination of the endangered Dwarf Bear-poppy Arctomecon humilis (Papaveraceae) across a quarter century: unraveling of a pollination web? West North Am Nat 74:311–324. doi: 10.3398/064.074.0306 CrossRefGoogle Scholar
  50. Torchio PF (1975) The biology of Perdita nuda and descriptions of its immature forms and those of its Sphecodes parasite (Hymenoptera: Apoidea). J Kansas Entomol Soc 48:257–279Google Scholar
  51. Torchio PF, Tepedino VJ (1982) Parsivoltinism in three species of Osmia bees. Psyche 89:221–238. doi: 10.1155/1982/60540 CrossRefGoogle Scholar
  52. Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113. doi: 10.1146/annurev-ecolsys-120213-091857 CrossRefGoogle Scholar
  53. United States Fish and Wildlife Service (1979) Endangered and threatened wildlife and plants; determination that Arctomecon humilis is an endangered species. Fed Regist 44:64250–64252Google Scholar
  54. United States Fish and Wildlife Service (2016) Dwarf Bear-poppy Arctomecon humilis Coville. 5-year review: summary and evaluation. Mountain-Prairie Region. Utah Ecological Services Field Office, Salt Lake City, UtahGoogle Scholar
  55. Villanueava GR, Roubik DW (2006) Why are African honey bees and not European bees invasive? Pollen diet diversity in community experiments. Apidologie 35:481–491. doi: 10.1051/apido:2004041 CrossRefGoogle Scholar
  56. Western Regional Climate Center (2017) Accessed 17 Jan 2017
  57. Williams NM, Minckley RL, Silveira FA (2001) Variation in native bee faunas and its implications for detecting community changes. Conserv Ecol 5:7CrossRefGoogle Scholar
  58. Winfree R, Aguilar R, Vazquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076. doi: 10.1890/08-1245.1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zachary M. Portman
    • 1
    Email author
  • Vincent J. Tepedino
    • 1
  • Amber D. Tripodi
    • 2
  • Allen L. Szalanski
    • 3
  • Susan L. Durham
    • 4
  1. 1.Department of BiologyUtah State UniversityLoganUSA
  2. 2.USDA ARS Pollinating Insects Research UnitUtah State UniversityLoganUSA
  3. 3.Department of EntomologyUniversity of ArkansasFayettevilleUSA
  4. 4.Ecology CenterUtah State UniversityLoganUSA

Personalised recommendations