Biological Invasions

, Volume 20, Issue 2, pp 501–517 | Cite as

Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic

  • Jesica Goldsmit
  • Philippe Archambault
  • Guillem Chust
  • Ernesto Villarino
  • George Liu
  • Jennifer V. Lukovich
  • David G. Barber
  • Kimberly L. Howland
Original Paper


A rise in Arctic shipping activity resulting from global warming and resource exploitation is expected to increase the likelihood of aquatic invasive species (AIS) introductions in the region. In this context, the potential threat of future AIS incursions at a Canadian Arctic regional scale was examined. Habitat suitability under current environmental conditions and future climate change scenarios was projected for a subset of eight potential invaders ranked as having a high risk of establishment in the Canadian Arctic based on dispersal pathways/donor regions, biological attributes and invasion history: (1) Amphibalanus improvisus, (2) Botrylloides violaceus, (3) Caprella mutica, (4) Carcinus maenas, (5) Littorina littorea, (6) Membranipora membranacea, (7) Mya arenaria and (8) Paralithodes camtschaticus. Habitat modelling was performed using MaxEnt based on globally known native and non-native occurrence records and environmental ranges for these species. Results showed that under current environmental conditions the habitat is suitable in certain regions of the Canadian Arctic such as the Hudson Complex and Beaufort Sea for L. littorea, M. arenaria and P. camtschaticus. Under a future climate change scenario, all species showed poleward gains in habitat suitability with at least some regions of the Canadian Arctic projected to be suitable for the complete suite of species modelled. The use of these models is helpful in understanding potential future AIS incursions as a result of climate change and shipping at large spatial scales. These approaches can aid in the identification of high risk regions and species to allow for more focused AIS monitoring and research efforts in response to climate change.


Arctic Biological invasions Climate change MaxEnt Ship-mediated invasive species Species distribution modelling 



Special thanks to K. Adair, J. Higdon and N. Casajus for help in collating/preparing data, and to C. McKindsey, T. Therriault and C. Ware for valuable comments, discussions and suggestions for improving the work. We are grateful for funding from the Natural Sciences and Engineering Research Council’s (NSERC) Canadian Aquatic Invasive Species Network (CAISN), the Fisheries and Oceans Canada Aquatic Climate Change Adaptation Service Program (ACCASP), the Nunavut Wildlife Management Board (NWMB), Quebec-Ocean and Polar Knowledge Canada. We also acknowledge the contributions of Dr. Youyu Lu, as well as the Canada Excellence Research Chair (CERC) and Canada Research Chair (CRC) programs. This work is a contribution to the ArcticNet Networks of Centres of Excellence and the Arctic Science Partnership (ASP) The author sequence follows the ‘first-last-author-emphasis’ norm (Tscharntke et al. 2007).

Supplementary material

10530_2017_1553_MOESM1_ESM.docx (478 kb)
Supplementary material 1 (DOCX 477 kb)


  1. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Global Change Biol 11:1504–1513CrossRefGoogle Scholar
  2. Archambault P, Snelgrove PVR, Fisher JAD, Gagnon JM, Garbary DJ, Harvey M, Kenchington EL, Lesage V, Levesque M, Lovejoy C, Mackas DL, McKindsey CW, Nelson JR, Pepin P, Piché L, Poulin M (2010) From sea to sea: canada’s three oceans of biodiversity. PLoS ONE 5:e12182PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arctic-Council (2009) Arctic Marine Shipping Assessment 2009. Protection of the Arctic Marine Environment Working Group, 194 pGoogle Scholar
  4. Ashton GV, Riedlecker EI, Ruiz GM (2008) First non-native crustacean established in coastal waters of Alaska. Aquat Biol 3:133–137CrossRefGoogle Scholar
  5. Bailey SA (2015) An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquat Ecosyst Health Manage 18:261–268CrossRefGoogle Scholar
  6. Barber DG, Galley R, Asplin MG, De Abreu R, Warner KA, Pućko M, Gupta M, Prinsenberg S, Julien S (2009) Perennial pack ice in the southern Beaufort Sea was not as it appeared in the summer of 2009. Geophys Res Lett. doi: 10.1029/2009GL041434
  7. Barber DG, Ehn JK, Pućko M, Rysgaard S, Deming JW, Bowman JS, Papakyriakou T, Galley RJ, Søgaard DH (2014) Frost flowers on young Arctic sea ice: the climatic, chemical, and microbial significance of an emerging ice type. J Geophys Res 119:11–593CrossRefGoogle Scholar
  8. Barnes DKA (1999) The influence of ice on polar nearshore benthos. J Mar Biol Assoc UK 79:401–407CrossRefGoogle Scholar
  9. Barnhart KR, Miller CR, Overeem I, Kay JE (2016) Mapping the future expansion of Arctic open water. Nat Clim Chang 6:280–285CrossRefGoogle Scholar
  10. Beaugrand G, Edwards M, Legendre L (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proc Natl Acad Sci 107:10120–10124PubMedPubMedCentralCrossRefGoogle Scholar
  11. Belanger CL, Jablonski D, Roy K, Berke SK, Krug AZ, Valentine JW (2012) Global environmental predictors of benthic marine biogeographic structure. Proc Natl Acad Sci 109:14046–14051PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boyer T, Mishonov A (2013) World Ocean Atlas 2013.
  13. Bradie J, Pietrobon A, Leung B (2015) Beyond species-specific assessments: an analysis and validation of environmental distance metrics for non-indigenous species risk assessment. Biol Invasions 17:3455–3465CrossRefGoogle Scholar
  14. Brawley SH, Coyer JA, Blakeslee AMH, Hoarau G, Johnson LE, Byers JE, Stam WT, Olsen JL (2009) Historical invasions of the intertidal zone of Atlantic North America associated with distinctive patterns of trade and emigration. Proc Natl Acad Sci 106:8239–8244PubMedPubMedCentralCrossRefGoogle Scholar
  15. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700CrossRefGoogle Scholar
  17. CAFF (2013) Arctic biodiversity assessment: status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, p 559Google Scholar
  18. Capinha C, Anastácio P (2011) Assessing the environmental requirements of invaders using ensembles of distribution models. Divers Distrib 17:13–24. doi: 10.1111/j.1472-4642.2010.00727.x CrossRefGoogle Scholar
  19. Carmack E, McLaughlin F (2011) Towards recognition of physical and geochemical change in Subarctic and Arctic Seas. Prog Oceanogr 90:90–104CrossRefGoogle Scholar
  20. Casas-Monroy O, Linley RD, Adams JK, Chan FT, Drake DAR, Bailey SA (2014) National risk assessment for introduction of aquatic nonindigenous species to Canada by ballast water. DFO Can Sci Advis Sec Res Doc 2013/128. vi + 73 pGoogle Scholar
  21. Casas-Monroy O, Linley RD, Adams JK, Chan FT, Drake DAR, Bailey SA (2015) Relative invasion risk for plankton across marine and freshwater systems: examining efficacy of proposed international ballast water discharge standards. PLoS ONE 10:e0118267PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chan FT, Bronnenhuber JE, Bradie JN, Howland KL, Simard N, Bailey SA (2012) Risk Assessment for ship-mediated introductions of aquatic nonindigenous species to the Canadian Arctic. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/105. vi + 93 pGoogle Scholar
  23. Chan F, Bailey S, Wiley C, MacIsaac H (2013) Relative risk assessment for ballast-mediated invasions at Canadian Arctic ports. Biol Invasions 15:295–308. doi: 10.1007/s10530-012-0284-z CrossRefGoogle Scholar
  24. Chan FT, MacIsaac HJ, Bailey SA (2015) Relative importance of vessel hull fouling and ballast water as transport vectors of nonindigenous species to the Canadian Arctic. Can J Fish Aquat Sci 72:1230–1242CrossRefGoogle Scholar
  25. Chapman JW, Carlton JT, Bellinger MR, Blakeslee AMH (2007) Premature refutation of a human-mediated marine species introduction: the case history of the marine snail Littorina littorea in the Northwestern Atlantic. Biol Invasions 9:995–1008CrossRefGoogle Scholar
  26. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251CrossRefGoogle Scholar
  27. Cheung WWL, Zeller D, Pauly D (2011) Projected species shifts due to climate change in the Canadian marine ecoregions. A report prepared for Environment Canada, 47 pGoogle Scholar
  28. Chust G, Castellani C, Licandro P, Ibaibarriaga L, Sagarminaga Y, Irigoien X (2013) Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J Mar Sci 71:241–253CrossRefGoogle Scholar
  29. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. US Department of Energy Publications, Washington, DC, p 6Google Scholar
  30. Compton TJ, Leathwick JR, Inglis GJ (2010) Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers Distrib 16:243–255. doi: 10.1111/j.1472-4642.2010.00644.x CrossRefGoogle Scholar
  31. Crafton RE (2014) Modeling invasion risk for coastal marine species utilizing environmental and transport vector data. Hydrobiologia 746:1–14. doi: 10.1007/s10750-014-2027-x Google Scholar
  32. Cusson M, Archambault P, Aitken A (2007) Biodiversity of benthic assemblages on the Arctic continental shelf: historical data from Canada. Mar Ecol Prog Ser 331:291–304CrossRefGoogle Scholar
  33. de Rivera CE, Steves BP, Fofonoff PW, Hines AH, Ruiz GM (2011) Potential for high-latitude marine invasions along western North America. Divers Distrib 17:1198–1209CrossRefGoogle Scholar
  34. Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37. doi: 10.1146/annurev-marine-041911-111611 PubMedCrossRefGoogle Scholar
  35. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:027–046CrossRefGoogle Scholar
  36. Drake JM, Lodge DM (2007) Hull fouling is a risk factor for intercontinental species exchange in aquatic ecosystems. Aquat Invasions 2:121–131CrossRefGoogle Scholar
  37. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80CrossRefGoogle Scholar
  38. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677CrossRefGoogle Scholar
  39. Elith J, Graham CH, Anderson RP, Dudk M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  40. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  41. Fetterer F, Knowles K, Meier W, Savoie M (2002) updated 2010: Sea ice index. National Snow and Ice Data Center, digital media.
  42. Floerl O (2014) Management challenges and opportunities for marine biosecurity in the Arctic. In: Fernandez L, Kaiser B, Vestergaard N, Þórarinsdóttir GG, Gunnarsson K, Gíslason ÓS (eds) Marine invasive species in the Arctic. Norræna ráðherranefndin, Copenhagen, p 199Google Scholar
  43. Gallardo B, Zieritz A, Aldridge DC (2015) The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS ONE 10:e0125801PubMedPubMedCentralCrossRefGoogle Scholar
  44. García-Roselló E, Guisande C, Manjarrés-Hernández A, González-Dacosta J, Heine J, Pelayo-Villamil P, González-Vilas L, Vari RP, Vaamonde A, Granado-Lorencio C, Lobo JM (2015) Can we derive macroecological patterns from primary Global Biodiversity Information Facility data? Global Ecol Biogeogr 24:335–347. doi: 10.1111/geb.12260 CrossRefGoogle Scholar
  45. Gavrilchuk K, Lesage V (2014) Large-scale marine development projects (mineral, oil and gas, infrastructure) proposed for Canada’s North. Can. Tech. Rep. Fish. Aquat. Sci. 3069: viii + 84 ppGoogle Scholar
  46. Gerasimova OV (1997) Analysis of king crab (Paralithodes camtschatica) trophic links in the Barents Sea. In: International Council for the Exploration of the Sea Council Meeting, 1997Google Scholar
  47. Gíslason ÓS, Halldórsson HP, Pálsson MF, Pálsson S, Davíðsdóttir B, Svavarsson J (2014) Invasion of the Atlantic rock crab (Cancer irroratus) at high latitudes. Biol Invasions 16:1865–1877CrossRefGoogle Scholar
  48. Goldsmit J (2016) Benthic non-indigenous species in ports of the Canadian Arctic: Identification, biodiversity and relationships with global warming and shipping activity. Université du Québec à Rimouski, Ph.D. Thesis, 250 ppGoogle Scholar
  49. Goldsmit J, Howland KL, Archambault P (2014) Establishing a baseline for early detection of non-indigenous species in ports of the Canadian Arctic. Aquat Invasions 9:327–342. doi: 10.3391/ai.2014.9.3.08 CrossRefGoogle Scholar
  50. Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Global Ecol Biogeogr 15:578–587CrossRefGoogle Scholar
  51. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  52. Guisan A, Graham CH, Elith J, Huettmann F (2007a) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340CrossRefGoogle Scholar
  53. Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007b) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630CrossRefGoogle Scholar
  54. Guy E, Lasserre F (2016) Commercial shipping in the Arctic: new perspectives, challenges and regulations. Polar Rec 52:294–304CrossRefGoogle Scholar
  55. Hertzog LR, Besnard A, Jay-Robert P (2014) Field validation shows bias-corrected pseudo-absence selection is the best method for predictive species-distribution modelling. Divers Distrib 20:1403–1413CrossRefGoogle Scholar
  56. Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688PubMedCrossRefGoogle Scholar
  57. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol 12:2272–2281CrossRefGoogle Scholar
  58. Hines AH, Ruiz GM, Fofonoff PW (2000) Summary of NIS in Prince William Sound and Alaska. Biological invasions of cold-water coastal ecosystems: ballast-mediated introductions in Port Valdez/Prince William Sound, Alaska. Regional Citizens’ Advisory Council of Prince William Sound, Prince William SoundGoogle Scholar
  59. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528PubMedCrossRefGoogle Scholar
  60. Hu X, Myers PG (2014) Changes to the Canadian Arctic Archipelago sea ice and freshwater fluxes in the twenty-first century under the Intergovernmental Panel on Climate Change A1B climate scenario. Atmos Ocean 52:331–350CrossRefGoogle Scholar
  61. Hutchinson GE (1957) The multivariate niche. Cold Spr Harb Symp Quant Biol 1957:415–421CrossRefGoogle Scholar
  62. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369CrossRefGoogle Scholar
  63. Jørgensen LL, Nilssen EM (2011) The invasive history, impact and management of the red king crab Paralithodes camtschaticus off the coast of Norway. In: Galil BS, Clark PF, Carlton JT (eds) In the wrong place-Alien Marine Crustaceans: distribution, biology and impacts. Springer, Berlin, pp 521–536Google Scholar
  64. Kelley A, de Rivera C, Buckley B (2013) Cold tolerance of the invasive Carcinus maenas in the east Pacific: molecular mechanisms and implications for range expansion in a changing climate. Biol Invasions 15:2299–2309. doi: 10.1007/s10530-013-0454-7 CrossRefGoogle Scholar
  65. Lambert G, Shenkar N, Swalla BJ (2010) First Pacific record of the north Atlantic ascidian Molgula citrina-bioinvasion or circumpolar distribution. Aquat Invasions 5:369–378CrossRefGoogle Scholar
  66. Larsen J, Anisimov OA, Constable A, Hollowed A, Maynard N, Prestrud P, Prowse T, Stone J (2014) Polar regions. In: Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1567–1612Google Scholar
  67. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789. doi: 10.1111/jbi.12058 CrossRefGoogle Scholar
  68. Lobo JM (2008) More complex distribution models or more representative data? Biodivers Inform 5:14–19. doi: 10.17161/bi.v5i0.40 CrossRefGoogle Scholar
  69. Locke A, Hanson JM (2009) Rapid response to nonindigenous species. 3. A proposed framework. Aquat Invasions 4:259–273CrossRefGoogle Scholar
  70. Lowen JB, McKindsey CW, Therriault TW, DiBacco C (2016) Effects of spatial resolution on predicting the distribution of aquatic invasive species in nearshore marine environments. Mar Ecol Prog Ser 556:17–30CrossRefGoogle Scholar
  71. MacDonald IR, Bluhm BA, Iken K, Gagaev S, Strong S (2010) Benthic macrofauna and megafauna assemblages in the Arctic deep-sea Canada Basin. Deep Sea Res Part II 57:136–152CrossRefGoogle Scholar
  72. Madec G (2008) NEMO reference manual, ocean dynamic component: NEMO-OPA. Note du Pole de modélisation. vol 27. Institut Pierre-Simon Laplace (IPSL), FranceGoogle Scholar
  73. Mathieson AC, Moore GE, Short FT (2010) A floristic comparison of seaweeds from James Bay and three contiguous northeastern Canadian Arctic sites. Rhodora 112:396–434CrossRefGoogle Scholar
  74. Meier WN, Hovelsrud GK, Oort BEH, Key JR, Kovacs KM, Michel C, Haas C, Granskog MA, Gerland S, Perovich DK (2014) Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev Geophys 52:185–217CrossRefGoogle Scholar
  75. Meißner K, Fiorentino D, Schnurr S, Martinez Arbizu P, Huettmann F, Holst S, Brix S, Svavarsson J (2014) Distribution of benthic marine invertebrates at northern latitudes—An evaluation applying multi-algorithm species distribution models. J Sea Res 85:241–254. doi: 10.1016/j.seares.2013.05.007 CrossRefGoogle Scholar
  76. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  77. Miller AW, Ruiz GM (2014) Arctic shipping and marine invaders. Nat Clim Chang 4:413–416CrossRefGoogle Scholar
  78. Minchin D (2006) The transport and the spread of living aquatic species. In: Davenport J, Davenport J (eds) The ecology of transportation: managing mobility for the environment, vol 10. Environmental Pollution. Springer, Netherlands, pp 77–97. doi: 10.1007/1-4020-4504-2_5
  79. Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492CrossRefGoogle Scholar
  80. Monterroso P, Brito JC, Ferreras P, Alves PC (2009) Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation. J Zool 279:27–35CrossRefGoogle Scholar
  81. Morgan RP, Block SB, Ulanowicz NI, Buys C (1978) Genetic variation in the soft-shelled clam, Mya arenaria. Estuaries 1:255–258CrossRefGoogle Scholar
  82. Moss RH, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds JA, Elgizouli I, Emori S, Lin E, Hibbard K (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Pacific Northwest National Laboratory (PNNL), RichlandGoogle Scholar
  83. Niimi AJ (2004) Environmental and economic factors can increase the risk of exotic species introductions to the Arctic region through increased ballast water discharge. Environ Manage 33:712–718PubMedCrossRefGoogle Scholar
  84. Orlov YI, Ivanov BG (1978) On the introduction of the Kamchatka king crab Paralithodes camtschatica (Decapoda: anomura: Lithodidae) into the Barents Sea. Mar Biol 48:373–375CrossRefGoogle Scholar
  85. Pearson RG (2007) Species’ distribution modeling for conservation educators and practitioners. American Museum of Natural History, vol. 1, pp 1–50. doi:
  86. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  87. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433PubMedCrossRefGoogle Scholar
  88. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  89. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  90. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197PubMedCrossRefGoogle Scholar
  91. Piepenburg D, Archambault P, Ambrose WG Jr, Blanchard AL, Bluhm BA, Carroll ML, Conlan KE, Cusson M, Feder HM, Grebmeier JM (2011) Towards a pan-Arctic inventory of the species diversity of the macro-and megabenthic fauna of the Arctic shelf seas. Mar Biodiv 41:51–70CrossRefGoogle Scholar
  92. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  93. Pizzolato L, Howell SEL, Derksen C, Dawson J, Copland L (2014) Changing sea ice conditions and marine transportation activity in Canadian Arctic waters between 1990 and 2012. Clim Change 123:161–173CrossRefGoogle Scholar
  94. Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361CrossRefGoogle Scholar
  95. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi: 10.1029/2002JD002670
  96. Reiss H, Cunze S, König K, Neumann H, Kröncke I (2011) Species distribution modelling of marine benthos: a North Sea case study. Mar Ecol Prog Ser 442:71–86CrossRefGoogle Scholar
  97. Reiss H, Birchenough S, Borja A, Buhl-Mortensen L, Craeymeersch J, Dannheim J, Darr A, Galparsoro I, Gogina M, Neumann H (2014) Benthos distribution modelling and its relevance for marine ecosystem management. ICES J Mar Sci:fsu107Google Scholar
  98. Ricciardi A, Rasmussen JB (1998) Predicting the identity and impact of future biological invaders: a priority for aquatic resource management. Can J Fish Aquat Sci 55:1759–1765CrossRefGoogle Scholar
  99. Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE, Possingham HP, Richardson AJ (2011) Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecol Biogeogr 20:789–802CrossRefGoogle Scholar
  100. Rocchini D, Hortal J, Lengyel S, Lobo JM, Jimenez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geo 35:211–226CrossRefGoogle Scholar
  101. Ruffilli DC (2011) Arctic Marine and Intermodal Infrastructure: Challenges and the Government of Canada’s Response. Library of ParliamentGoogle Scholar
  102. Ruiz GM, Hewitt CL (2009) Latitudinal patterns of biological invasions in marine ecosystems: a polar perspective. Smithsonian Institution Scholarly Press, Washington DC, pp 347–358Google Scholar
  103. Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Anson HH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu Rev Ecol Syst 31:481–531. doi: 10.2307/221741 CrossRefGoogle Scholar
  104. Ruiz GM, Huber T, Larson K, McCann L, Steves B, Fofonoff P, Hines AH (2006) Biological invasions in Alaska’s coastal marine ecosystems: establishing a baseline. Prince William Sound Regional Citizens’ Advisory Council & U.S. Fish & Wildlife Service, Prince William SoundGoogle Scholar
  105. Ruiz GM, Fofonoff PW, Steves BP, Carlton JT (2015) Invasion history and vector dynamics in coastal marine ecosystems: a North American perspective. Aquat Ecosyst Health Manage 18:299–311CrossRefGoogle Scholar
  106. Smith LC, Stephenson SR (2013) New Trans-Arctic shipping routes navigable by midcentury. Proc Natl Acad Sci 110:E1191–E1195PubMedPubMedCentralCrossRefGoogle Scholar
  107. Snickars M, Gullström M, Sundblad G, Bergström U, Downie AL, Lindegarth M, Mattila J (2014) Species–environment relationships and potential for distribution modelling in coastal waters. J Sea Res 85:116–125CrossRefGoogle Scholar
  108. Solomon S (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. vol 4. Cambridge University PressGoogle Scholar
  109. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX, Halpern BS, Jorge MA, Lombana AL, Lourie SA (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  110. Stammerjohn S, Massom R, Rind D, Martinson D (2012) Regions of rapid sea ice change: an inter‐hemispheric seasonal comparison. Geophys Res Lett. doi: 10.1029/2012GL050874
  111. Strasser M (1998) Mya arenaria—an ancient invader of the North Sea coast. Helgoländer Meeresuntersuchungen 52:309–324CrossRefGoogle Scholar
  112. Streftaris N, Zenetos A, Papathanassiou E (2005) Globalisation in marine ecosystems: the story of non-indigenous marine species across European seas. Oceanogr Mar Biol Annu Rev 43:419–453Google Scholar
  113. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: Faster than forecast. Geophys Res Lett. doi: 10.1029/2007GL029703
  114. Stroeve J, Serreze M, Holland M, Kay J, Malanik J, Barrett A (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027. doi: 10.1007/s10584-011-0101-1 CrossRefGoogle Scholar
  115. Svavarsson J, Dungal P (2008) Leyndardómar sjávarins við Ísland. ReykjavíkGoogle Scholar
  116. Tremblay P (2017) Évaluation du risque potentiel d’introduction d’espèces non-indigènes de mésozooplancton suite au déversement des eaux de ballast d’un navire domestique dans l’Arctique canadien. Msc Thesis, Univeristé du Québec à Rimouski, 151 pGoogle Scholar
  117. Tscharntke T, Hochberg ME, Rand TA, Resh VH, Krauss J (2007) Author sequence and credit for contributions in multiauthored publications. PLoS Biol 5:e18PubMedPubMedCentralCrossRefGoogle Scholar
  118. Turcotte C, Sainte-Marie B (2009) Biological synopsis of the Japanes skeleton shrimp (Caprella mutica). Can. Manuscr. Rep Fish Aquat Sci 2903: vii + 26 pGoogle Scholar
  119. Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol Biogeogr 21:272–281CrossRefGoogle Scholar
  120. Valle M, Chust G, del Campo A, Wisz MS, Olsen SM, Garmendia JM, Borja Á (2014) Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biol Conserv 170:74–85CrossRefGoogle Scholar
  121. Villarino E, Chust G, Licandro P, Butenschön M, Ibaibarriaga L, Larrañaga A, Irigoien X (2015) Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change. Mar Ecol Prog Ser 531:121–142CrossRefGoogle Scholar
  122. Wagner FJE (1977) Recent mollusc distribution patterns and palaeobathymetry, southeastern Beaufort Sea. Can J Earth Sci 14:2013–2028CrossRefGoogle Scholar
  123. Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693PubMedCrossRefGoogle Scholar
  124. Ware C, Berge J, Sundet JH, Kirkpatrick JB, Coutts ADM, Jelmert A, Olsen SM, Floerl O, Wisz MS, Alsos IG (2014) Climate change, non-indigenous species and shipping: assessing the risk of species introduction to a high-Arctic archipelago. Divers Distrib 20:10–19. doi: 10.1111/ddi.12117 CrossRefGoogle Scholar
  125. Ware C, Berge J, Jelmert A, Olsen SM, Pellissier L, Wisz M, Kriticos D, Semenov G, Kwaśniewski S, Alsos IG (2015) Biological introduction risks from shipping in a warming Arctic. J Appl Ecol 53:340–349CrossRefGoogle Scholar
  126. Watanabe M, Suzuki T, O’Ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335CrossRefGoogle Scholar
  127. Weinert M, Mathis M, Kröncke I, Neumann H, Pohlmann T, Reiss H (2016) Modelling climate change effects on benthos: distributional shifts in the North Sea from 2001 to 2099. Estuar Coast Shelf Sci 175:157–168CrossRefGoogle Scholar
  128. Wenger SJ, Som NA, Dauwalter DC, Isaak DJ, Neville HM, Luce CH, Dunham JB, Young MK, Fausch KD, Rieman BE (2013) Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Global Change Biol 19:3343–3354Google Scholar
  129. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes J-A, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson M-C, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning J-C (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc 88:15–30. doi: 10.1111/j.1469-185X.2012.00235.x PubMedCrossRefGoogle Scholar
  130. Wisz MS, Broennimann O, Grønkjær P, Møller PR, Olsen SM, Swingedouw D, Hedeholm RB, Nielsen EE, Guisan A, Pellissier L (2015) Arctic warming will promote Atlantic–Pacific fish interchange. Nat Clim Chang 5:261–265CrossRefGoogle Scholar
  131. Yates CJ, McNeill A, Elith J, Midgley GF (2010) Assessing the impacts of climate change and land transformation on Banksia in the South West Australian Floristic Region. Divers Distrib 16:187–201CrossRefGoogle Scholar
  132. Young BE, Franke I, Hernandez PA, Herzog SK, Paniagua L, Tovar C, Valqui T (2009) Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. Auk 126:554–565CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université du Québec à Rimouski, Institut des sciences de la mer de Rimouski (UQAR/ISMER)RimouskiCanada
  2. 2.Maurice Lamontagne InstituteFisheries and Oceans CanadaMont-JoliCanada
  3. 3.Département de biologie, Faculté des sciences et de génieUniversité LavalQuebecCanada
  4. 4.Marine Research DivisionAZTI-TecnaliaSukarrietaSpain
  5. 5.Faculty of Environment, Earth, and ResourcesUniversity of ManitobaWinnipegCanada
  6. 6.Freshwater InstituteFisheries and Oceans CanadaWinnipegCanada

Personalised recommendations