Biological Invasions

, Volume 19, Issue 11, pp 3183–3200 | Cite as

Ecology of invasive forest pathogens

  • Luisa Ghelardini
  • Nicola Luchi
  • Francesco Pecori
  • Alessia L. Pepori
  • Roberto Danti
  • Gianni Della Rocca
  • Paolo Capretti
  • Panaghiotis Tsopelas
  • Alberto SantiniEmail author
Forest Invasions


Invasive forest pathogens are a major threat to forests worldwide, causing increasing damage. The knowledge of both the specific traits underlying the capacity of a pathogen to become invasive, and the attributes predisposing an environment to invasion are to be thoroughly understood in order to deal with forest invasions. This paper summarizes the historical knowledge on this subject. Many aspects of the ecological processes underlying alien forest pathogens invasions are still unknown, which raises several scientific issues that need further study. The introduction of invasive forest pathogens to areas where naïve hosts are found, is mainly due to global plant trade. Rapid transportation and reduced delivery times increase the chances of survival of pathogen propagules and of their successful establishment in new environments. In forest pathogens, the reproduction mode seems not to be a crucial determinant of invasiveness, as highly destructive pathogens have a variety of reproductive strategies. The most important drivers of forest pathogen invasions appear to be (a) great adaptability to new environmental conditions; (b) efficient dispersal over long and short distances, possibly assisted by the capacity to form novel associations with endemic and/or alien insect vectors; (c) the ability to exchange genetic material or hybridize with resident or alien species. Moreover, these features interact with some key traits of the invaded environment, e.g. environmental variability and biodiversity richness. Host resistance and natural enemies may occur as a result of rapid selection/adaptation after the epidemic phase of invasion.


Disease spread Economic impact Invasibility Invasion pathways Invasiveness Novel insect-fungus associations Pathogen hybridization 



The authors wish to thank the anonymous reviewers and the editors for their helpful comments and revision of the manuscript. Dr. Lorenzo Bonosi is warmly acknowledged for revising the manuscript. The International Union of Forest Research Organisations, Task Force on Biological Invasions in Forests, and The Organisation for Economic Co-operation and Development (OECD) are acknowledged for financial support. Funding was provided by OECD (Grant No. TAD/CRP JA87649).


  1. Adamson K, Klavina D, Drenkhan R, Gaitnieks T, Hanso M (2015) Diplodia sapinea is colonizing the native Scots pine (Pinus sylvestris) in the northern Baltics. Eur J Plant Pathol 143(2):343–350. doi: 10.1007/s10658-015-0686-8 CrossRefGoogle Scholar
  2. Ali S, Leconte M, Walker AS, Enjalbert J, de Vallavieille-Pope C (2010) Reduction in the sex ability of worldwide clonal populations of Puccinia striiformis f.sp. Tritici. Fungal Genet Biol 47(10):828–838. doi: 10.1016/j.fgb.2010.07.002 PubMedCrossRefGoogle Scholar
  3. Anagnostakis SL (2012) Chestnut breeding in the United States for disease and insect resistance. Plant Dis 96:1392–1403. doi: 10.1094/PDIS-04-12-0350-FE CrossRefGoogle Scholar
  4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544. doi: 10.1016/j.tree.2004.07.021 PubMedCrossRefGoogle Scholar
  5. Baird RE (1991) Growth and stromata production of hypovirulent and virulent strains of Cryphonectria parasitica on dead Quercus rubra and Acer rubrum. Mycologia 83:158–162CrossRefGoogle Scholar
  6. Bandyopadhyay R, Frederiksen RA (1999) Contemporary global movement of emerging plant diseases. Ann N Y Acad Sci 894:28–36. doi: 10.1111/j.1749-6632.1999.tb08040.x PubMedCrossRefGoogle Scholar
  7. Barrett LG, Thrall PH, Burdon JJ, Linde CC (2008) Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends Ecol Evol 23:678–685. doi: 10.1016/j.tree.2008.06.017 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Battisti A, Roques A, Colombari F, Frigimelica G, Guido M (1999) Efficient transmission of an introduced pathogen via an ancient insect-fungus association. Naturwissenschaften 86:479–483PubMedCrossRefGoogle Scholar
  9. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148. doi: 10.3389/fmicb.2014.00148 PubMedPubMedCentralGoogle Scholar
  10. Bihon W, Slippers B, Burgess T, Wingfield MJ, Wingfield B (2011) Diplodia scrobiculata found in southern hemisphere. For Path 41:175–181. doi: 10.1111/j.1439-0329.2010.00649.x CrossRefGoogle Scholar
  11. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi: 10.1016/j.tree.2011.03.023 PubMedCrossRefGoogle Scholar
  12. Blodgett JT, Bonello P (2003) The aggressiveness of Sphaeropsis sapinea on Austrian pine varies with isolate group and site of infection. For Path 33:15–19. doi: 10.1046/j.1439-0329.2003.00303.x CrossRefGoogle Scholar
  13. Bradshaw CJA, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles J-M, Simard F, Courchamp F (2016) Massive yet grossly underestimated global costs of invasive insects. Nat Commun 7:12986. doi: 10.1038/ncomms12986 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brasier CM (1982) The future of Dutch elm disease in Europe. In: Burdekin DA (ed) Research on Dutch elm disease in Europe. Forestry Commission Bulletin vol 60, pp 96–104Google Scholar
  15. Brasier CM (1983) A cytoplasmically transmitted disease of Ceratocystis ulmi. Nature 305:220–223. doi: 10.1038/305220a0 CrossRefGoogle Scholar
  16. Brasier CM (1988) Rapid changes in genetic structure of epidemic populations of Ophiostoma ulmi. Nature 332:538–541. doi: 10.1038/332538a0 CrossRefGoogle Scholar
  17. Brasier CM (1990) China and the origins of Dutch elm disease: an appraisal. Plant Pathol 39:5–16. doi: 10.1111/j.1365-3059.1990.tb02470.x CrossRefGoogle Scholar
  18. Brasier CM (2000) The rise of the hybrid fungi. Nature 405:134–135. doi: 10.1038/35012193 PubMedCrossRefGoogle Scholar
  19. Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133. doi: 10.1641/0006-3568(2001)051[0123:REOIPP]2.0.CO;2 CrossRefGoogle Scholar
  20. Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808. doi: 10.1111/j.1365-3059.2008.01886.x CrossRefGoogle Scholar
  21. Brasier CM, Gibbs JN (1973) Origin of the Dutch elm disease in Britain. Nature 242:607–609. doi: 10.1038/242607a0 CrossRefGoogle Scholar
  22. Brasier CM, Kirk SA (2001) Designation of the EAN and NAN races of Ophiostoma novo-ulmi as subspecies. Mycol Res 105:547–554. doi: 10.1017/S0953756201004087 CrossRefGoogle Scholar
  23. Brasier CM, Kirk SA (2010) Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol 59:186–199. doi: 10.1111/j.1365-3059.2009.02157.x CrossRefGoogle Scholar
  24. Brasier CM, Webber J (2010) Sudden larch death. Nature 466:824–825. doi: 10.1038/466824a PubMedCrossRefGoogle Scholar
  25. Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Natl Acad Sci USA 96(10):5878–5883. doi: 10.1073/pnas.96.10.5878 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brasier CM, Buck K, Paoletti M, Crawford L, Kirk S (2004) Molecular analysis of evolutionary changes in population of Ophiostoma novo-ulmi. Invest Agrar Sist Recur For 13:93–103Google Scholar
  27. Brown JK, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581):537–541. doi: 10.1126/science.1072678 PubMedCrossRefGoogle Scholar
  28. Brownlie J, Peckham C, Waage J, Woolhouse M, Lyall C, Meagher L, Tait J, Baylis M, Nicoll A (2006) Infectious diseases: preparing for the future. In: Foresight report on the detection and identification of infectious diseases over the next 10–25 years. Future Threats. Government Office for Science and Innovation, London, UK. Accessed 6 June 2017
  29. Buck KW, Brasier CM, Paoletti M, Crawford L (2002) Virus transmission and gene flow between two species of Dutch elm disease fungi, Ophiostoma ulmi and O. novo-ulmi: deleterious viruses as selective agents for gene introgression. In: Hails RS, Beringer JE, Godfrey HA (eds) Genes in the environment. Blackwells, Oxford, pp 26–45Google Scholar
  30. Burgess T, Wingfield BD, Wingfield MJ (2001) Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. Mycol Res 105:1331–1339. doi: 10.1017/S0953756201005056 CrossRefGoogle Scholar
  31. Burgess TI, Crous CJ, Slippers B, Wingfield MJ (2016) Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants 8:plw076. doi: 10.1093/aobpla/plw076 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Campbell FT, Schlarbaum SE (1994) Fading forests: North American trees and the threat of exotic pests. Natural Resources Defense Council, New York, p 47Google Scholar
  33. Close RC, Moar NT, Tomlinson AI, Lowe AD (1978) Int J Biometeorol 22:1–19. doi: 10.1007/BF01553136 CrossRefGoogle Scholar
  34. Cristinzio M, Marziano F, Vernau R (1973) La moria del platano in Campania. Riv Pat Veg 9:189–214Google Scholar
  35. Dantec CF, Ducasse H, Capdevielle X, Fabreguettes O, Delzon S, Desprez-Loustau ML (2015) Escape of spring frost and disease through phenological variations in oak populations along elevation gradients. J Ecol 103:1044–1056. doi: 10.1111/1365-2745.12403 CrossRefGoogle Scholar
  36. Danti R, Panconesi A, Di Lonardo V, Della Rocca G, Raddi P (2006) ‘Italico’ and ‘Mediterraneo’: two Seiridium cardinale canker-resistant cypress cultivars of Cupressus sempervirens. HortScience 41:1357–1359Google Scholar
  37. Danti R, Della Rocca G, Panconesi A (2013a) Cypress canker. In: Nicolotti G, Gonthier P (eds) Infectious forest disease. CABI Press, Oxfordshire, pp 359–375CrossRefGoogle Scholar
  38. Danti R, Di Lonardo V, Pecchioli A, Della Rocca G (2013b) ‘Le Crete 1’ and ‘Le Crete 2’: two newly patented Seiridium cardinale canker resistant cultivars of Cupressus sempervirens. For Path 43:204–210. doi: 10.1111/efp.12016 CrossRefGoogle Scholar
  39. Davis RA, Valentine LE, Craig MD, Wilson B, Bancroft WJ, Mallie M (2014) Impact of Phytophthora-dieback on birds in Banksia woodlands in south west Western Australia. Biol Conserv 171:136–144. doi: 10.1016/j.biocon.2014.01.027 CrossRefGoogle Scholar
  40. de Wet J, Wingfield MJ, Coutinho TA, Wingfield BD (2000) Characterization of Sphaeropsis sapinea isolates from South Africa, Mexico, and Indonesia. Plant Dis 84(2):151–156. doi: 10.1094/PDIS.2000.84.2.151 CrossRefGoogle Scholar
  41. de Wet J, Burges T, Slippers B, Preisig O, Wingfield BD, Wingfield MJ (2003) Multiple gene genealogies and microsatellite markers reflect relationship between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia. Mycol Res 107:557–566. doi: 10.1017/S0953756203007706 PubMedCrossRefGoogle Scholar
  42. Della Rocca G, Eyre CA, Danti R, Garbelotto M (2011) SSR and sequence analyses of the fungal pathogen Seiridium cardinale indicate California is the source of the cypress canker epidemic for the Mediterranean region. Phytopathology 101:1408–1417. doi: 10.1094/PHYTO-05-11-0144 PubMedCrossRefGoogle Scholar
  43. Della Rocca G, Osmundson T, Danti R, Pecchioli A, Donnarumma F, Casalone E, Garbelotto M (2013) AFLP analysis of California and Mediterranean populations of Seiridium cardinale provide insights on its origin, biology and spread pathways. For Path 3:211–221. doi: 10.1111/efp.12019 CrossRefGoogle Scholar
  44. Depotter JRL, Seidl MF, Woods TA, Thomma BPHJ (2016) Interspecific hybridization impacts host range and pathogenicity of filamentous microbes. Curr Opin Microbiol 32:7–13. doi: 10.1016/j.mib.2016.04.005 PubMedCrossRefGoogle Scholar
  45. Desprez-Loustau M-L, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22(9):472–480. doi: 10.1016/j.tree.2007.04.005 PubMedCrossRefGoogle Scholar
  46. Desprez-Loustau M-L, Courtecuisse R, Robin C, Husson C, Moreau P-A, Blancard D, Selosse M-A, Lung-Escarmant B, Piou D, Sache I (2010) Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biol Invas 12:157–172. doi: 10.1007/s10530-009-9439-y CrossRefGoogle Scholar
  47. Desprez-Loustau M-L, Aguayo J, Dutech C, Hayden KJ, Husson C, Jakushkin B, Marçais B, Piou D, Robin C, Vacher C (2016) An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Ann For Sci 73:45–67. doi: 10.1007/s13595-015-0487-4 CrossRefGoogle Scholar
  48. Dhillon B, Feau N, Aerts AL, Beauseigle S, Bernier L, Alex Copeland A, Foster A, Gill N, Henrissat B, Herath P, LaButti KM, Levasseur A, Lindquist EA, Majoor E, Ohm RA, Pangilinan JL, Pribowo A, Saddler JN, Sakalidis ML, de Vries RP, Grigoriev IV, Goodwin SB, Tanguay P, Hamelin RC (2015) Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen. PNAS 112(11):3451–3456. doi: 10.1073/pnas.1424293112 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dunn AM, Hatcher MJ (2015) Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol 35:189–199. doi: 10.1016/ CrossRefGoogle Scholar
  50. Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibanez I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun. doi: 10.1038/ncomms12485 PubMedPubMedCentralGoogle Scholar
  51. Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathol 60(1):54–69. doi: 10.1111/j.1365-3059.2010.02402.x CrossRefGoogle Scholar
  52. Elliott KJ, Swank WT (2008) Long-term changes in forest composition and diversity following early logging (1919–1923) and the decline of American chestnut (Castanea dentata). Plant Ecol 197:155–172. doi: 10.1007/s11258-007-9352-3 CrossRefGoogle Scholar
  53. Engelbrecht CJB, Harrington TC, Steimel J, Capretti P (2004) Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Mol Ecol 13:2995–3005. doi: 10.1111/j.1365-294X.2004.02312.x PubMedCrossRefGoogle Scholar
  54. Environment Canada (2004) An invasive alien species strategy for Canada. Ottawa, Canada. Accessed 6 June 2017
  55. EPPO (2014) Diagnostics, phytosanitary measures PM 7/14 (2): Ceratocystis platani. Bull OEPP/EPPO Bull 44:338–349CrossRefGoogle Scholar
  56. Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V, Epanchin-Niell RS, Gupta K, Hardy G, Huang Y, Kenis M, Kimani E, Li H-M, Olsen S, Ormrod R, Otieno W, Sadof C, Tadeu E, Theyse M (2015) International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ Sci Policy 51:228–237. doi: 10.1016/j.envsci.2015.04.021 CrossRefGoogle Scholar
  57. Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Normann JB III, Barnett DT (2008) Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib 14:808–817. doi: 10.1111/j.1472-4642.2008.00486.x CrossRefGoogle Scholar
  58. Fabre B, Piou D, Desprez-Loustau M-L, Marcais B (2011) Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change? Global Change Biol 17:3218–3227. doi: 10.1111/j.1365-2486.2011.02428.x CrossRefGoogle Scholar
  59. Fent M, Kment P (2011) First record of the invasive western conifer seed bug Leptoglossus occidentalis (Heteroptera: Coreidae) in Turkey. NorthWest J Zool 7(1):72–80Google Scholar
  60. Fisher MC, Henk AD, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plants and ecosystems. Nature 484:186–194. doi: 10.1038/nature10947 PubMedCrossRefGoogle Scholar
  61. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  62. Fransen JJ, Buisman C (1935) Infectieproven op verschillende iepensoorten met behulp van iepen spinkevers. Tidjscfrift over plantenziekten 41:221–239Google Scholar
  63. Garbelotto M, Gonthier P (2013) Biology, epidemiology, and control of heterobasidion species worldwide. Annu Rev Phytohol 51:39–59. doi: 10.1146/annurev-phyto-082712-102225 CrossRefGoogle Scholar
  64. Garbelotto M, Della Rocca G, Osmundson T, di Lonardo V, Danti R (2015) An increase in transmission-related traits and in phenotypic plasticity is documented during a fungal invasion. Ecosphere 6(19):1–16. doi: 10.1890/ES14-00426.1 Google Scholar
  65. Garcia-Guzman G, Heil M (2014) Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytol 201:1106–1120. doi: 10.1111/nph.12562 PubMedCrossRefGoogle Scholar
  66. Ghelardini L (2007) Bud burst phenology, dormancy release and susceptibility to Dutch elm disease in elms (Ulmus spp.). Doctoral thesis, Uppsala, Sveriges lantbruksuniversitet, Acta Universitatis agriculturae Sueciae, 1652-6880; 2007:134, ISBN 978-91-85913-33-6, Accesses 06 June 2017
  67. Ghelardini L, Santini A (2009) Avoidance by early flushing: a new perspective on Dutch elm disease research. iforest 2:143–153. doi: 10.3832/ifor0508-002 CrossRefGoogle Scholar
  68. Ghelardini L, Pepori AL, Luchi N, Capretti P, Santini A (2016) Drivers of emerging fungal diseases of forest trees. For Ecol Manag 381:235–246. doi: 10.1016/j.foreco.2016.09.032 CrossRefGoogle Scholar
  69. Giau B (1999) La valutazione del paesaggio forestale. Agribusiness Paesaggio ed Ambiente 3:137–144Google Scholar
  70. Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Annu Rev Phytopath 16:287–307. doi: 10.1146/ CrossRefGoogle Scholar
  71. Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen–host range. Proc Natl Acad Sci USA 104:4979–4983. doi: 10.1073/pnas.0607968104 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol 25:387–395. doi: 10.1016/j.tree.2010.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gladieux P, Guérin F, Giraud T, Caffier V, Lemaire C, Parisi L, Didelot F, Le Cam B (2011) Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants. Mol Ecol 20:4521–4532. doi: 10.1111/j.1365-294X.2011.05288.x PubMedCrossRefGoogle Scholar
  74. Gladieux P, Feurtey A, Hood ME, Snirc A, Clavels J, Dutech C, Roy M, Giraud T (2015) The population biology of fungal invasions. Mol Ecol 24:1969–1986. doi: 10.1111/mec.13028 PubMedCrossRefGoogle Scholar
  75. Gluck-Thaler E, Jason C, Slot JC (2015) Dimensions of horizontal gene transfer in eukaryotic microbial pathogens. PLoS Pathog 11(10):e1005156. doi: 10.1371/journal.ppat.1005156 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Graniti A (1998) Cypress canker: a pandemic in progress. Annu Rev Phytopathol 36:91–114. doi: 10.1146/annurev.phyto.36.1.91 PubMedCrossRefGoogle Scholar
  77. Grente J (1965) Les formes Hypovirulentes d’Endothia parasitica et les espoirs de lutte contre le chancre du chataignier. Académie d’Agriculture de France, Extrait du Proces-verbal de la Séance 51:1033–1037Google Scholar
  78. Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170. doi: 10.1146/annurev-genom-090711-163814 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gross A, Holdenrieder O, Pautasso M, Queloz V, Sieber TN (2014) Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol Plant Pathol 15(1):5–21. doi: 10.1111/mpp.12073 PubMedCrossRefGoogle Scholar
  80. Haight RG, Homans FR, Horie T, Mehta SV, Smith DJ, Venette RC (2011) Assessing the cost of an invasive forest pathogen: a case study with oak wilt. Environ Manag 47:506–517. doi: 10.1007/s00267-011-9624-5 CrossRefGoogle Scholar
  81. Hanso M, Drenkhan R (2009) Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. Plant Pathol 58(4):797. doi: 10.1111/j.1365-3059.2009.02082.x CrossRefGoogle Scholar
  82. Heard SB, Stireman JO 3rd, Nason JD, Cox GH, Kolacz CR, Brown JM (2006) On the elusiveness of enemy-free space: spatial, temporal, and host-plant-related variation in parasitoid attack rates on three gallmakers of goldenrods. Oecologia 150:421–434. doi: 10.1007/s00442-006-0529-6 PubMedCrossRefGoogle Scholar
  83. Holmes JC (1979) Parasite populations and host community structure. Academic Press, New YorkGoogle Scholar
  84. Hui C, Richardson DM, Landi P, Minoarivelo HO, Garnas J, Roy HE (2016) Defining invasiveness and invasibility in ecological networks. Biol Invasions 18(4):971–983. doi: 10.1007/s10530-016-1076-7 CrossRefGoogle Scholar
  85. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18. doi: 10.1111/j.1365-2664.2008.01600.x CrossRefGoogle Scholar
  86. Hummer KE (2000) History of the origin and dispersal of white pine blister rust. HortTechnology 10:515–517Google Scholar
  87. Jones DR, Baker RHA (2007) Introductions of non native plant pathogens into Great Britain, 1970-2004. Plant Pathol 56:891–910. doi: 10.1111/j.1365-3059.2007.01619.x CrossRefGoogle Scholar
  88. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi: 10.1038/nature05286 PubMedCrossRefGoogle Scholar
  89. Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evolut Biol 15:173–190. doi: 10.1046/j.1420-9101.2002.00377.x CrossRefGoogle Scholar
  90. Klapwijk MJ, Hopkins AJM, Eriksson L, Pettersson M, Martin Schroeder M, Lindelöw Å, Rönnberg J, Keskitalo ECH, Kenis M (2016) Reducing the risk of invasive forest pests and pathogens: combining legislation, targeted management and public awareness. Ambio 45(Suppl 2):223. doi: 10.1007/s13280-015-0748-3 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Path 36(4):264–270. doi: 10.1111/j.1439-0329.2006.00453.x CrossRefGoogle Scholar
  92. Kräutler K, Kirisits T (2012) The ash dieback pathogen Hymenoscyphus pseudoalbidus is associated with leaf symptoms on ash species (Fraxinus spp.). J Agric Ext Rural Dev 4:261–265. doi: 10.5897/JAERD12.065 Google Scholar
  93. Leppik EE (1970) Gene centers of plants as sources of disease resistance. Annu Rev Phytopathol 8:323–344. doi: 10.1146/ CrossRefGoogle Scholar
  94. Lesieur V, Yart A, Guilbon S, Lorme P, Auger-Rozenberg M-A, Roques A (2014) The invasive Leptoglossus seed bug, a threat for commercial seed crops, but for conifer diversity? Biol Inv. doi: 10.1007/s10530-013-0630-9 Google Scholar
  95. Li X, Liu X, Kraus F, Tingley R, Li Y (2016) Risk of biological invasions is concentrated in biodiversity hotspots. Front Ecol Environ 14(8):411–417. doi: 10.1002/fee.1321 CrossRefGoogle Scholar
  96. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143. doi: 10.1890/110198 CrossRefGoogle Scholar
  97. Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (2004) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Netherlands. doi: 10.1007/978-1-4020-2241-8 CrossRefGoogle Scholar
  98. Linaldeddu BT, Scanu B, Franceschini A (2010) First report of Diplodia scrobiculata causing canker and branch dieback on strawberry Tree (Arbutus unedo) in Italy. Plant Dis 94(7):919. doi: 10.1094/PDIS-94-7-0919C CrossRefGoogle Scholar
  99. Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Inv 8:1535–1545. doi: 10.1007/s10530-005-5845-y CrossRefGoogle Scholar
  100. Loo J (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Inv 11:81–96. doi: 10.1007/s10530-008-9321-3 CrossRefGoogle Scholar
  101. Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395–405. doi: 10.1641/0006-3568(2006)056[0395:FERTEP]2.0.CO;2 CrossRefGoogle Scholar
  102. Lovett GM, Arthur MA, Weathers KC, Griffin JM (2010) Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 13:1188–1200. doi: 10.1007/s10021-010-9381-y CrossRefGoogle Scholar
  103. Lovett GM, Weiss M, Liebhold AM, Holmes TP, Leung B, Lambert KF, Orwig DA, Campbell FT, Rosenth J, McCulloug DG, Wildova R, Ayres MP, Canham CD, Foster DR, LaDeau SL, Weldy T (2016) Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol Appl 26:1437–1455. doi: 10.1890/15-1176 PubMedCrossRefGoogle Scholar
  104. Luchi N, Capretti P, Bonello P (2007) Production of Diplodia scrobiculata and D. pinea pycnidia on ground Austrian pine needle agar medium. Phytopathol Mediterr 46:230–235. doi: 10.14601/Phytopathol_Mediterr-2157 Google Scholar
  105. Luchi N, Mancini V, Feducci M, Santini A, Capretti P (2012) Leptoglossus occidentalis and Diplodia pinea: a new insect-fungus association in Mediterranean forests. For Pathol 42:246–251. doi: 10.1111/j.1439-0329.2011.00750.x CrossRefGoogle Scholar
  106. Luchi N, Ghelardini L, Belbahri L, Quartier M, Santini A (2013) Rapid detection of Ceratocystis platani inoculum by quantitative real-time PCR assay. Appl Environ Microbiol 79:5394–5404. doi: 10.1128/AEM.01484-13 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Luchi N, Oliveira Longa CM, Danti R, Capretti P, Maresi G (2014) Diplodia sapinea: the main fungal species involved in the colonization of pine shoots in Italy. For Path 44:372–381. doi: 10.1111/efp.12109 CrossRefGoogle Scholar
  108. Lugo AE (2015) Forestry in the anthropocene. Science 349(6250):771. doi: 10.1126/science.aad2208 PubMedCrossRefGoogle Scholar
  109. McDonald GI, Richardson BA, Zambino PJ, Klopfenstein NB, Kim M-S (2006) Pedicularis and Castilleja are natural hosts of Cronartium ribicola in North America: a first report. For Pathol 36:73–82. doi: 10.1111/j.1439-0329.2006.00432.x CrossRefGoogle Scholar
  110. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94. doi: 10.1111/j.1461-0248.2006.00987.x PubMedCrossRefGoogle Scholar
  111. Misra BB, Chaturvedi R (2015) When plants brace for the emerging pathogens. Physiol Mol Plant Pathol 92:181–185. doi: 10.1016/j.pmpp.2015.03.004 CrossRefGoogle Scholar
  112. Morrison WE, Hay ME (2011) Herbivore preference for native vs exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve. PLoS ONE 6:e17227. doi: 10.1371/journal.pone.0017227 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Morse BA (2005) Alien invasive species: impacts on forests and forestry. A review. Forest Health and Biosecurity Working Paper 8. Forest Resources Development Service Working Paper FBS/8E. Forest Resources Division FAO, Rome, Italy, Forestry DepartmentGoogle Scholar
  114. Nieuwenhuis BP, Aanen DK (2012) Sexual selection in fungi. J Evol Biol 25:2397–2411. doi: 10.1111/jeb.12017 PubMedCrossRefGoogle Scholar
  115. Notaro S, Raffaelli R, Gios G (2005) Una valutazione economica del valore paesaggistico del cipresso (Cupressus sempervirens) nell’Alto Garda. Riv Economia Agraria 60(3):603–626Google Scholar
  116. O’Donnell J, Gallagher RV, Wilson PD, Downey PO, Hughes L, Leishman MR (2012) Invasion hot-spots for non-native plants in Australia under current and future climates. Global Change Biol 18:617–629. doi: 10.1111/j.1365-2486.2011.02537.x CrossRefGoogle Scholar
  117. Ocasio-Morales RG, Tsopelas P, Harrington TC (2007) Origin of Ceratocystis platani on native Platanus orientalis in Greece and its impact on natural forests. Plant Dis 91:901–904. doi: 10.1094/PDIS-91-7-0901 CrossRefGoogle Scholar
  118. Oliva J, Boberg J, Stenlid J (2013) First report of Sphaeropsis sapinea on Scots pine (Pinus sylvestris) and Austrian pine (P. nigra) in Sweden. New Dis Rep 27:23. doi: 10.5197/j.2044-0588.2013.027.023 CrossRefGoogle Scholar
  119. Panconesi A (1990) Pathological disorders in the Mediterranean basin. In: Agriculture-AGRIMED Research Programme: progress in EEC Research on Cypress Diseases. Rep. EUR 12493 EN. Ponchet J (ed). Commission of the European Communities, Brussels, pp 54–81Google Scholar
  120. Panconesi A (1999) Canker stain of plane tree: a serious danger to urban plantings in Europe. J Plant Pathol 81:3–15. doi: 10.4454/jpp.v81i1.1041 Google Scholar
  121. Paoletti M, Buck KW, Brasier CM (2006) Selective acquisition of novel mating type and vegetative incompatibility genes via interspecies gene transfer in the globally invading eukaryote Ophiostoma novo-ulmi. Mol Ecol 14:249–263. doi: 10.1111/j.1365-294X.2005.02728.x Google Scholar
  122. Parker IM, Gilbert GS (2007) When there is no escape: the effects of natural enemies on native, invasive, and non invasive plants. Ecology 88:1210–1224. doi: 10.1890/06-1377 PubMedCrossRefGoogle Scholar
  123. Philibert A, Desprez-Loustau M-L, Fabre B, Frey P, Halkett F, Husson C, Lung-Escarmant B, Marçais B, Robin C, Vacher C, Makowski D (2011) Predicting invasion success of forest pathogenic fungi from species traits. J Appl Ecol 48:1381–1390. doi: 10.1111/j.1365-2664.2011.02039.x CrossRefGoogle Scholar
  124. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367. doi: 10.1242/jeb.02070 PubMedCrossRefGoogle Scholar
  125. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50(1):53–65. doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 CrossRefGoogle Scholar
  126. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal and microbe invasions. Agric Ecosyst Environ 84(1):1–20. doi: 10.1016/S0167-8809(00)00178-X CrossRefGoogle Scholar
  127. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien invasive species in the United States. Ecol Econ 52(3):273–288. doi: 10.1016/j.ecolecon.2004.10.002 CrossRefGoogle Scholar
  128. Poulin R (2011) Evolutionary ecology of parasites, 2nd edn. Princeton University Press Princeton, Princeton. ISBN 9781400840809CrossRefGoogle Scholar
  129. Prospero S, Cleary M (2017) Effects of host variability on the spread of invasive forest diseases. Forests 8:80. doi: 10.3390/f8030080 CrossRefGoogle Scholar
  130. Prospero S, Conedera M, Heiniger U, Rigling D (2006) Saprophytic activity and sporulation of Cryphonectria parasitica on dead chestnut wood in forests with naturally established hypovirulence. Phytopathology 96(12):1337–1344. doi: 10.1094/PHYTO-96-1337 PubMedCrossRefGoogle Scholar
  131. Real LA, Biek R (2007) Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. J R Soc Interface 4(16):935–948. doi: 10.1098/rsif.2007.1041 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geog 30(3):409–431. doi: 10.1191/0309133306pp490pr CrossRefGoogle Scholar
  133. Rigling D, Prospero S (2017) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol. doi: 10.1111/mpp.12542 PubMedGoogle Scholar
  134. Roversi PF, Strong WB, Caleca V, Maltese M, Peverieri GS, Marianelli L, Marziali L, Strangi A (2011) Introduction into Italy of Gryon pennsylvanicum (Ashmead), an egg parasitoid of the alien invasive bug Leptoglossus occidentalis Heidemann. EPPO Bull 41(1):72–75. doi: 10.1111/j.1365-2338.2011.02439.x CrossRefGoogle Scholar
  135. Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko R, Brasier CM (2014) Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465. doi: 10.1890/130240 CrossRefGoogle Scholar
  136. Roy HE, Hesketh H, Purse BV, Eilenberg J, Santini A, Scalera R, Stentiford GD, Adriaens T, Bacela-Spychalska K, Bass D, Beckmann KM, Bessell P, Bojko J, Booy O, Cardoso AC, Essl F, Groom Q, Harrower C, Kleespies R, Martinou AF, van Oers MM, Peeler EJ, Pergl J, Rabitsch W, Roques A, Schaffner F, Schindler S, Schmidt BR, Schönrogge K, Smith J, Solarz W, Stewart A, Stroo A, Tricarico E, Turvey KMA, Vannini A, Vilà M, Woodward S, Wynns AA, Dunn AM (2016) Alien pathogens on the horizon: opportunities for predicting their threat to wildlife. Conserv Lett. doi: 10.1111/conl.12297 Google Scholar
  137. Sache I, Roy AS, Suffert F, Desprez-Loustau ML (2011) Invasive plant pathogens in Europe. In: Pimentel D (ed) Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, 2nd edn. CRC Press-Taylor and Francis Group, Boca Raton. doi: 10.1201/b10938 Google Scholar
  138. Salari AN, Arefipoor MR, Jami F, Zahedi M, Mehrabi A, Zeinali S (2006) First report of Ceratocystis fimbriata f. sp. platani causal agent of canker stain of sycamore trees in Iran. In: Proceedings of the 17th Iranian Plant Protection Congress, 2–5 Sept. 2006, University of Tehran Karaj, Iran, p 41Google Scholar
  139. Santini A, Capretti P (2000) Analysis of the Italian population of Ceratocystis fimbriata f. sp. platani using RAPD and minisatellite markers. Plant Pathol 49:461–467. doi: 10.1046/j.1365-3059.2000.00470.x CrossRefGoogle Scholar
  140. Santini A, Di Lonardo V (2000) Genetic variability of the ‘bark canker resistance’ character in several natural provenances of Cupressus sempervirens. For Path 30:87–96. doi: 10.1046/j.1439-0329.2000.00188.x CrossRefGoogle Scholar
  141. Santini A, Faccoli M (2015) Dutch elm disease and elm bark beetles: a century of association. iforest 8:126–134. doi: 10.3832/ifor1231-008 CrossRefGoogle Scholar
  142. Santini A, Fagnani A, Ferrini F, Ghelardini L, Mittempergher L (2005) Variation among Italian and French elm clones in their response to Ophiostoma novo-ulmi inoculation. For Pathol 35:183–193. doi: 10.1111/j.1439-0329.2005.00401.x CrossRefGoogle Scholar
  143. Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250. doi: 10.1111/j.1469-8137.2012.04364.x PubMedCrossRefGoogle Scholar
  144. Scherm H, Coakley SM (2003) Plant pathogens in a changing world. Austr Plant Pathol 32:157–165. doi: 10.1071/AP03015 CrossRefGoogle Scholar
  145. Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125. doi: 10.1016/j.tplants.2011.01.001 PubMedCrossRefGoogle Scholar
  146. Simonian SA, Mamikonyan TO (1982) Disease of plane tree. Zashchita-Rastenii 8:23–24Google Scholar
  147. Slippers B, Stenlid J, Wingfield MJ (2005) Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends Ecol Evol 20:420–421. doi: 10.1016/j.tree.2005.05.002 PubMedCrossRefGoogle Scholar
  148. Solla A, Martin JA, Corral P, Gil L (2005) Seasonal changes in wood formation of Ulmus pumila and U-minor and its relation with Dutch elm disease. New Phytol 166(3):1025–1034. doi: 10.1111/j.1469-8137.2005.01384.x PubMedCrossRefGoogle Scholar
  149. Stanosz GR, Smith DR, Gutmiller MA (1996) Characterization of Sphaeropsis sapinea from the west central United States by means of random amplified polymorphic DNA marker analysis. Plant Dis 80:1175–1178CrossRefGoogle Scholar
  150. Stanosz GR, Swart WJ, Smith DR (1999) RAPD marker and isozyme characterization of Sphaeropsis sapinea from diverse coniferous hosts and locations. Mycol Res 103:1193–1202. doi: 10.1017/S0953756299008382 CrossRefGoogle Scholar
  151. Stanosz GR, Blodgett JT, Smith DR, Kruger EL (2001) Water stress and Sphaeropsis sapinea as a latent pathogen of red pine seedlings. New Phythol 149:531–538. doi: 10.1046/j.1469-8137.2001.00052.x CrossRefGoogle Scholar
  152. Stellin G, Rosato P (1998) La valutazione economica dei beni ambientali. Metodologia e casi di studio. UTET, TorinoGoogle Scholar
  153. Stukenbrock EH (2016) Hybridization speeds up the emergence and evolution of a new pathogen species. Nat Genet 48(2):113–115. doi: 10.1038/ng.3494 PubMedCrossRefGoogle Scholar
  154. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98(3):1095–1100. doi: 10.1073/pnas.98.3.1095 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Swei A, Ostfeld RS, Lane RS, Briggs CJ (2011) Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus. Oecologia 166:91–100. doi: 10.1007/s00442-010-1796-9 PubMedCrossRefGoogle Scholar
  156. Tamburini M, Maresi G, Salvadori C, Battisti A, Zottele F, Pedrazzoli F (2012) Adaptation of the invasive western conifer seed bug Leptoglossus occidentalis to Trentino, an alpine region (Italy). Bull Insectol 65(2):161–170Google Scholar
  157. Taylor SJ, Tescari G, Villa M (2001) A nearctic pest of Pinaceae accidentally introduced into Europe: Leptoglossus occidentalis (Heteroptera: Coreidae) in northern Italy. Entomol News 112(2):101–103Google Scholar
  158. Tempesta T (1997) Paesaggio rurale ed agro-tecnologie innovative: una ricerca nella pianura tra Tagliamento ed Isonzo. Franco Angeli, Milano, ItalyGoogle Scholar
  159. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273. doi: 10.1111/j.1469-8137.2007.02207.x PubMedCrossRefGoogle Scholar
  160. Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332. doi: 10.1016/S0169-5347(98)01378-0 PubMedCrossRefGoogle Scholar
  161. Tsopelas P, Soulioti N (2011) New records on the spread of canker stain disease in natural ecosystems of oriental plane in Peloponnese and Epirus, Greece. In Proceedings of the 15th National Forestry Congress, October 16-19 Karditsa, Greece (in Greek, with English summary) pp 350–359Google Scholar
  162. Tsopelas P, Soulioti N (2014) Invasion of the fungus Ceratocystis platani in Epirus: a potential threat of an environmental disaster in the natural ecosystems of plane trees. Phytopathol Mediterr 53:340–376. doi: 10.14601/Phytopathol_Mediterr-14192 Google Scholar
  163. Tsopelas P, Palavouzis S, Tzima AK, Tsopelas MA, Soulioti N, Paplomatas EJ (2015) First report of Ceratocystis platani in Albania. For Path 45:433–436. doi: 10.1111/efp.12219 CrossRefGoogle Scholar
  164. Tsopelas P, Santini A, Wingfield MJ, DeBeer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101(5):645–658. doi: 10.1094/PDIS-09-16-1235-FE CrossRefGoogle Scholar
  165. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209. doi: 10.1186/gb-2013-14-6-209 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Vacher C, Daudin J-J, Piou D, Marie-Laure Desprez-Loustau M-L (2010) Ecological integration of alien species into a tree-parasitic fungus network. Biol Inv 12:3249–3259. doi: 10.1007/s10530-010-9719-6 CrossRefGoogle Scholar
  167. Vigouroux A (2013) Le chancre colore du platane: Description et methodes de lutte, fiche de synthese. Plante & Cité, Center for landscape and urban horticulture, (last accessed 2016-06-08)
  168. Vigouroux A, Stojadinovic B (1990) Possibilité d’infection du platane par Ceratocystis fimbriata f. platani après contamination de l’eau où se développent des racines blessées. Eur J For Path 20:118–121. doi: 10.1111/j.1439-0329.1990.tb01280.x CrossRefGoogle Scholar
  169. Wagener WW (1939) The canker of Cupressus induced by Coryneum cardinale n. sp. J Agric Res 58(1):1–47Google Scholar
  170. Walter JM, Rex EG, Schreiber R (1952) The rate of progress and destructiveness of canker stain of plane-trees. Phytopathology 42:236–239Google Scholar
  171. Webber JF (2004) Experimental studies on factors influencing the transmission of Dutch elm disease. Sistemas y Recursos Forestales 13:197–205. doi: 10.5424/824 Google Scholar
  172. Webber JF, Brasier CM (1984) The transmission of Dutch elm disease: a study of the processes involved. In: Anderson JM, Rayner ADM, Walton D (eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, pp 271–306Google Scholar
  173. Webber JF, Brasier CM, Mitchell AG (1987) The role of the saprophytic phase in Dutch elm disease. In: Pegg GF, Ayres PG (eds) Fungal infection of plants: symposium of the British Mycological Society. Cambridge University Press, Cambridge, pp 298–313Google Scholar
  174. Wingfield MJ, Garnas JR, Hajek A, Hurley BP, Wilhelm de Beer Z, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Inv 18(4):1045–1056. doi: 10.1007/s10530-016-1084-7 CrossRefGoogle Scholar
  175. Wingfield MJ, Slippers B, Wingfield BD, Barnes I (2017a) The unified framework for biological invasions: a forest fungal pathogen perspective. Biol Inv. doi: 10.1007/s10530-017-1450-0 Google Scholar
  176. Wingfield MJ, Barnes I, de Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017b) Novel associations between ophiostomatoid fungi, insects and tree hosts: current status—future prospects. Biol Inv. doi: 10.1007/s10530-017-1468-3 Google Scholar
  177. Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160(6):705–711. doi: 10.1086/343872 PubMedGoogle Scholar
  178. Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41(3):496–506. doi: 10.2307/3544109 CrossRefGoogle Scholar
  179. Xenopoulos S, Diamandis S (1985) A distribution map for Seiridium cardinale causing the cypress canker in Greece. Eur J For Pathol 15:223–226. doi: 10.1111/j.1439-0329.1985.tb00889.x CrossRefGoogle Scholar
  180. Xu H, Qiang S, Han Z, Guo J, Huang Z, Sun H, He S, Ding H, Wu H, Wan F (2006a) The status and causes of alien species invasion in China. Biodivers Conserv 15(9):2893–2904. doi: 10.1007/s10531-005-2575-5 CrossRefGoogle Scholar
  181. Xu RD, Dickie IA, Wingfield MJ, Hirsch H, Crous CJ, Meyerson LA, Burgess TI, Zimmermann TG, Klock MM, Siemann E, Erfmeier A, Aragon R, Montti L, Le Roux JJ (2006b) Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB Plants 8:plw085. doi: 10.1093/aobpla/plw085 Google Scholar
  182. Xu H, Qiang S, Genovesi P, Ding H, Wu J, Meng L, Han Z, Miao J, Hu B, Guo J, Sun H, Huang C, Lei J, Le Z, Zhang X, He S, Wu Y, Zheng Z, Chen L, Jarošík V, Pyšek P (2012) An inventory of invasive alien species in China. NeoBiota 15:1–26. doi: 10.3897/neobiota.15.3575 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Istituto per la Protezione Sostenibile delle Piante IPSPConsiglio Nazionale delle Ricerche CNRSesto FiorentinoItaly
  2. 2.Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente DiSPAAUniversità di FirenzeFlorenceItaly
  3. 3.Hellenic Agricultural Organization ‘Demeter’ Institute of Mediterranean Forest EcosystemsAthensGreece

Personalised recommendations