Biological Invasions

, Volume 19, Issue 9, pp 2739–2750 | Cite as

Challenges in confirming eradication success of invasive red-eared sliders

  • Pablo García-Díaz
  • David S. L. Ramsey
  • Andrew P. Woolnough
  • Marc Franch
  • Gustavo A. Llorente
  • Albert Montori
  • Xabier Buenetxea
  • Asier R. Larrinaga
  • Matthieu Lasceve
  • Alberto Álvarez
  • José María Traverso
  • Aitor Valdeón
  • Ariñe Crespo
  • Virginia Rada
  • Enrique Ayllón
  • Vicente Sancho
  • J. Ignacio Lacomba
  • José Vicente Bataller
  • Miguel Lizana
Original Paper

Abstract

Confirming eradication success can be notoriously difficult and costly, especially when the species is still present but remains undetected, due to very low population densities and imperfect detection methods. There has been a lack of research on appropriate guidelines and estimation procedures for declaring eradication success for programs aimed at eradicating alien reptiles. Here we develop quantitative rules for confirmation monitoring in eradication campaigns of the red-eared slider turtle (Trachemys scripta elegans). We used a database of slider trapping data from control and eradication campaigns conducted in localities across the Iberian Peninsula and southern France to construct models for inferring appropriate trapping efforts for confirming slider turtle eradication. Basking traps were slightly more efficient than net traps in capturing sliders, although trapping was an inefficient monitoring method given the low capture probabilities estimated. The results of our spatially-explicit eradication scenarios revealed the importance of habitat configuration in declaring eradication success. Declaration of eradication success is contingent on the thresholds set to minimise false positives (i.e., falsely declaring eradication successful), but in any scenario large trapping efforts were required to confirm eradication. Given the low estimated capture probabilities, alternative methods such as eDNA and visual surveys should be considered for monitoring sliders. We suggest that if the costs associated with the impact of alien sliders can be adequately estimated, then eradication can be confirmed by rules minimising both false positive and negative error rates. Otherwise, rules minimising false positive errors would be more appropriate.

Keywords

Alien reptile Capture probability Environmental decision-making False positive Monitoring Trachemys scripta elegans 

Supplementary material

10530_2017_1480_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)
10530_2017_1480_MOESM2_ESM.docx (2.4 mb)
Supplementary material 2 (DOCX 2414 kb)

References

  1. Anderson D, Ramsey D, Nugent G (2013) A novel approach to assess the probability of disease eradication from a wild-animal reservoir host. Epidemiol Infect 141:1509–1521CrossRefPubMedGoogle Scholar
  2. Bluett RD, Cosentino BJ (2013) Estimating occupancy of Trachemys scripta and Chrysemys picta with time-lapse cameras and basking rafts: a pilot study in Illinois, USA. Illinois State Academy of Science. Transactions 106:15–21Google Scholar
  3. Burgman MA, McCarthy MA, Robinson A et al (2013) Improving decisions for invasive species management: reformulation and extensions of the Panetta-Lawes eradication graph. Divers Distrib 19:603–607CrossRefGoogle Scholar
  4. Davy CM, Kidd AG, Wilson CC (2015) Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS ONE 10:e0130965CrossRefPubMedPubMedCentralGoogle Scholar
  5. Epanchin-Niell RS, Haight RG, Berec L et al (2012) Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol Lett 15:803–812CrossRefPubMedGoogle Scholar
  6. Ficetola F, Rodder D, Padoa-Schioppa E (2012) Trachemys scripta (slider terrapin). In: Francis R (ed) A handbook of global freshwater invasive species. Earthscan, Oxon, pp 331–339Google Scholar
  7. Franch M, Llorente GA, Montori A (2007) Primeros datos sobre la biología de Trachemys scripta elegans en sintopía con Mauremys leprosa en el Delta del Llobregat (NE Ibérico). In: GEIB Grupo Especialista en Invasiones Biológicas (ed) Invasiones Biológicas: un factor de cambio global. GEIB Grupo Especialista en Invasiones Biológicas, León, Spain, pp 85–101Google Scholar
  8. García-Díaz P, Ross JV, Ayres C et al (2015) Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles. Glob Change Biol 21:1078–1091CrossRefGoogle Scholar
  9. García-Díaz P, Ross JV, Woolnough AP et al (2016) The illegal wildlife trade is a likely source of alien species. Conserv Lett. doi:10.1111/conl.12301
  10. Gelman A, Meng X-L, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–760Google Scholar
  11. Groves CR, Game ET (2016) Conservation planning: informed decisions for a healthier planet. Roberts, Greenwood VillageGoogle Scholar
  12. Guillera-Arroita G, Hauser CE, McCarthy MA (2014) Optimal surveillance strategy for invasive species management when surveys stop after detection. Ecol Evol 4:1751–1760CrossRefPubMedPubMedCentralGoogle Scholar
  13. Héritier L, Valdeón A, Sadaoui A et al (2017) Introduction and invasion of the red-eared slider and its parasites in freshwater ecosystems of southern Europe: risk assessment for the European pond turtle in wild environments. Biodivers Conserv 1–27. doi:10.1007/s10531-017-1331-y
  14. Hoffmann BD, Luque GM, Bellard C et al (2016) Improving invasive ant eradication as a conservation tool: a review. Biol Conserv 198:37–49CrossRefGoogle Scholar
  15. Iglesias R, García-Estévez JM, Ayres C et al (2015) First reported outbreak of severe spirorchiidiasis in Emys orbicularis, probably resulting from a parasite spillover event. Dis Aquat Organ 113:75–80CrossRefPubMedGoogle Scholar
  16. Jones HP, Holmes ND, Butchart SHM et al (2016) Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113:4033–4038CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kraus F (2009) Alien reptiles and amphibians: a scientific compendium and analysis. Springer, DordrechtCrossRefGoogle Scholar
  18. Kraus F (2015) Impacts from invasive reptiles and amphibians. Annu Rev Ecol Evol Syst 46:75–97CrossRefGoogle Scholar
  19. Lasceve M (2014) Premiers résultats de l’opération de limitation de la population de tortues de Floride sur le site des Vieux Salins, Hyères (Var, France) Scientific Reports of Port-Cros National Park, vol 28, pp 195–201Google Scholar
  20. Lebboroni M, Cecchini A (2005) Basking counts as abundance indices in pond populations of Emys orbicularis. Herpetol J 15:121–124Google Scholar
  21. Lindenmayer DB, Likens GE (2009) Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends Ecol Evol 24:482–486CrossRefPubMedGoogle Scholar
  22. McIntosh CR, Finnoff DC, Settle C et al (2009) Economic valuation and invasive species. In: Keller RP, Lodge DM, Lewis MA, Shogren JF (eds) Bioeconomics of invasive species. Integrating ecology, economics, policy, and management. Oxford University Press, New York, pp 151–179Google Scholar
  23. O’Keeffe S (2009) The practicalities of eradicating red-eared slider turtles (Trachemys scripta elegans). Aliens Invas Species Bull 28:19–25Google Scholar
  24. Pearson SH, Avery HW, Spotila JR (2015) Juvenile invasive red-eared slider turtles negatively impact the growth of native turtles: implications for global freshwater turtle populations. Biol Conserv 186:115–121CrossRefGoogle Scholar
  25. Pérez-Santigosa N, Díaz-Paniagua C, Hidalgo-Vila J et al (2006a) Características de dos poblaciones reproductoras del galápago de Florida, Trachemys scripta elegans, en el suroeste de España. Rev Esp Herpetol 20:5–16Google Scholar
  26. Pérez-Santigosa NP, Paniagua CD, Vila JH et al (2006b) Trampas y plataformas de asoleamiento: la mejor combinación para erradicar galápagos exóticos. Bol Asoc Herpetol Esp 17:115–120Google Scholar
  27. Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003), Vienna, Austria, pp 20–22Google Scholar
  28. Possingham HP, Franklin J, Wilson K et al (2005) The roles of spatial heterogeneity and ecological processes in conservation planning. In: Lovett GM, Turner MG, Jones CG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, New York, pp 389–406CrossRefGoogle Scholar
  29. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  30. Ramsey DS, Parkes J, Morrison SA (2009) Quantifying eradication success: the removal of feral pigs from Santa Cruz Island, California. Conserv Biol 23:449–459CrossRefPubMedGoogle Scholar
  31. Ramsey DS, Parkes JP, Will D et al (2011) Quantifying the success of feral cat eradication, San Nicolas Island, California. New Zeal J Ecol 35:163–173Google Scholar
  32. Regan HM, Ben-Haim Y, Langford B et al (2005) Robust decision-making under severe uncertainty for conservation management. Ecol Appl 15:1471–1477CrossRefGoogle Scholar
  33. Regan TJ, McCarthy MA, Baxter PWJ et al (2006) Optimal eradication: when to stop looking for an invasive plant. Ecol Lett 9:759–766CrossRefPubMedGoogle Scholar
  34. Rout TM, Kirkwood R, Sutherland DR et al (2014) When to declare successful eradication of an invasive predator? Anim Conserv 17:125–132CrossRefGoogle Scholar
  35. Russell JC, Binnie HR, Oh J et al (2016) Optimizing confirmation of invasive species eradication with rapid eradication assessment. J Appl Ecol 54:160–169CrossRefGoogle Scholar
  36. Sancho V, Lacomba JI (2016) Expansion of Trachemys scripta in the Valencian Community (Eastern Spain). Proc Int Symp Fresh Turtles Conserv 1:41–49Google Scholar
  37. Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefPubMedPubMedCentralGoogle Scholar
  38. Spiegelhalter DJ, Best NG, Carlin BP et al (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B (Statistical Methodology) 64:583–639CrossRefGoogle Scholar
  39. Tobin P, Kean J, Suckling D et al (2014) Determinants of successful arthropod eradication programs. Biol Invas 16:401–414CrossRefGoogle Scholar
  40. Valdeón A, Crespo-Diaz A, Egaña-Callejo A et al (2010) Update of the pond slider Trachemys scripta (Schoepff, 1792) records in Navarre (Northern Spain), and presentation of the Aranzadi Turtle Trap for its population control. Aquat Invas 5:297–302CrossRefGoogle Scholar
  41. Ward DF, Anderson DP, Barron MC (2016) Using spatially explicit surveillance models to provide confidence in the eradication of an invasive ant. Sci Rep 6:34953CrossRefPubMedPubMedCentralGoogle Scholar
  42. Will DJ, Campbell KJ, Holmes ND (2015) Using digital data collection tools to improve overall cost-efficiency and provide timely analysis for decision making during invasive species eradication campaigns. Wildl Res 41:499–509CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pablo García-Díaz
    • 1
    • 2
    • 3
  • David S. L. Ramsey
    • 4
  • Andrew P. Woolnough
    • 5
  • Marc Franch
    • 6
    • 7
  • Gustavo A. Llorente
    • 6
  • Albert Montori
    • 6
  • Xabier Buenetxea
    • 8
  • Asier R. Larrinaga
    • 9
  • Matthieu Lasceve
    • 10
  • Alberto Álvarez
    • 11
  • José María Traverso
    • 11
  • Aitor Valdeón
    • 12
    • 13
  • Ariñe Crespo
    • 13
  • Virginia Rada
    • 13
  • Enrique Ayllón
    • 11
  • Vicente Sancho
    • 14
  • J. Ignacio Lacomba
    • 15
  • José Vicente Bataller
    • 16
  • Miguel Lizana
    • 2
  1. 1.School of Biological Sciences and Centre for Conservation Science and Technology (CCoST)The University of AdelaideNorth TerraceAustralia
  2. 2.Department of Animal BiologyUniversity of SalamancaSalamancaSpain
  3. 3.Landcare ResearchLincolnNew Zealand
  4. 4.Arthur Rylah Institute, Department of Land, Water and EnvironmentHeidelbergAustralia
  5. 5.Department of Economic Development, Jobs, Transport and ResourcesAttwoodAustralia
  6. 6.Section of Zoology and Anthropology, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  7. 7.CICGE - Centro de Investigação em Ciências Geo-Espaciais Observatório Astronómico Prof. Manuel de Barros Alameda do Monte da VirgemVila Nova de GaiaPortugal
  8. 8.BOLUE Ingurumen IkerketakGamiz-FikaSpain
  9. 9.eNeBaDaAríns - Santiago de CompostelaSpain
  10. 10.Toulon Provence Méditerranée, Communauté d’AgglomérationToulonFrance
  11. 11.Asociación Herpetológica EspañolaLeganésSpain
  12. 12.Departamento de Geografía y Ordenación del Territorio, Instituto de Investigación en Ciencias Ambientales (IUCA)Universidad de ZaragozaZaragozaSpain
  13. 13.Department of HerpetologyAranzadi Society of SciencesDonostia-San SebastiánSpain
  14. 14.LIFE+Trachemys Project, Wildlife ServiceRegional Ministry of Environment, Generalitat ValencianaValenciaSpain
  15. 15.Direcció General de Medi Natural, Generalitat ValencianaValenciaSpain
  16. 16.Freshwater Species Conservation Centre, Wildlife Service, Regional Ministry of EnvironmentVAERSA-Generalitat ValencianaEl SalerSpain

Personalised recommendations