Advertisement

Biological Invasions

, Volume 19, Issue 8, pp 2491–2502 | Cite as

Effects of invasive aquatic carrion on soil chemistry and terrestrial microbial communities

  • Adriana Novais
  • Cláudia Pascoal
  • Ronaldo Sousa
Original Paper

Abstract

Carrion plays a crucial role in the recycling of nutrients and organic matter in ecosystems. Yet, despite their ecological importance, studies addressing the relevance of carrion originated from invasive alien species (IAS) in the interface between aquatic and terrestrial ecosystems are uncommon, especially those assessing belowground effects. In this study, we carried out a manipulative experiment to assess the impact of massive mortalities of the Asian clam Corbicula fluminea (Müller, 1774) as a carrion subsidy evaluating possible effects on the terrestrial soil chemistry and the structure of a microbial (bacteria and fungi) community. We placed five levels of C. fluminea density (0, 100, 500, 1000 and 2000 ind. m−2) and samples were collected 7, 30 and 90 days after clams’ addition. The results revealed that C. fluminea carrion have a significant effect belowground, especially on nutrients content (mainly NH4 +, NO2 , NO3 and PO4 3−), fungal biomass and fungal and bacterial diversity. Given the predicted increase and intensification of extreme climatic events and the widespread distribution of several aquatic IAS (including bivalve species such as C. fluminea) the ecological importance of these massive mortalities (and resulting carrion) cannot be ignored because they may affect microbial communities with significant impacts on nutrient cycling, even in adjacent terrestrial habitats.

Keywords

Invasive alien species Corbicula fluminea Nutrients Bacteria Fungi Resource pulse Minho River 

Notes

Acknowledgements

Adriana Novais was supported by a Ph.D. Grant (SFRH/BD/86463/2012) from the Portuguese Foundation for Science and Technology (FCT) through POPH/FSE funds. The study was supported by (1) the project ECO-IAS: Ecosystem-level impacts of an invasive alien species funded by the FCT and COMPETE funds (PTDC/AAC-AMB/116685/2010), and (2) the strategic program UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and the ERDF through the COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). Authors thank the anonymous reviewers for valuable suggestions, which contributed to improve the manuscript; Cristiana Araújo, Maria José Araújo and Maria Luis Miranda for their help on experimental setup; Ester Dias and William McDowell for their help on one sampling campaign, and Martina Ilarri for help on statistical analysis.

Supplementary material

10530_2017_1459_MOESM1_ESM.docx (20 kb)
Table S1 Mean (± SEM) of organic C and total N (%), NH4 +, NO2 , NO3 , PO4 3−, Ca and K (mg kg−1) and two-way PERMANOVA results at different densities of C. fluminea (0, 100, 500, 1000 and 2000 ind. m−2) and sampling times (7, 30 and 90 days) and their interaction term. * = p < 0.05; ns = non-significant (DOCX 20 kb)

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008a) PERMANOVA + for primer: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  3. Anderson WB, Wait DA, Stapp P (2008b) Resources from another place and time: responses to pulses in a spatially subsidized system. Ecology 89:660–670. doi: 10.1890/07-0234.1 CrossRefPubMedGoogle Scholar
  4. Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013) The role of carrion in maintaining biodiversity and ecological process in terrestrial ecosystems. Oecologia 171:761–772. doi: 10.1007/s00442-012-2460-3 CrossRefPubMedGoogle Scholar
  5. Benbow ME, Tomberlin JK, Tarone AM (2015) Introduction to carrion ecology, evolution, and their applications. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 3–12CrossRefGoogle Scholar
  6. Bódis E, Tóth B, Sousa R (2014) Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia 735:253–262. doi: 10.1007/s10750-013-1445-5 CrossRefGoogle Scholar
  7. Bothe H, Ferguson SJ, Newton WE (2007) Biology of nitrogen cycle. Elsevier, AmsterdamGoogle Scholar
  8. Bump JK, Tischler KB, Schrank AJ, Petrson RO, Vucetich JA (2009a) Large herbivores and aquatic-terrestrial links in southern boreal forests. J Anim Ecol 78:338–345. doi: 10.1111/j.1365-2656.2008.01498.x CrossRefPubMedGoogle Scholar
  9. Bump JK, Webster CR, Vucetich JA, Peterson RO, Shields JM, Powers MD (2009b) Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12:996–1007. doi: 10.1007/s10021-009-9274-0 CrossRefGoogle Scholar
  10. Bump JK, Peterson RO, Vucetich JA (2009c) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90:3159–3167. doi: 10.1890/09-0292.1 CrossRefPubMedGoogle Scholar
  11. Cammack JA, Pimsler ML, Crippen TL, Tomberlin JK (2015) Chemical ecology of vertebrate carrion. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 187–212CrossRefGoogle Scholar
  12. Carter DO, Tibbett M (2003) Taphonomic mycota: fungi with forensic potential. J Forensic Sci 48:168–171. doi: 10.1520/JFS2002169 CrossRefPubMedGoogle Scholar
  13. Carter DO, Tibbett M (2006) Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biol Biochem 38:1139–1145. doi: 10.1016/j.soilbio.2005.09.014 CrossRefGoogle Scholar
  14. Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24. doi: 10.1007/s00114-006-0159-1 CrossRefPubMedGoogle Scholar
  15. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, PlymouthGoogle Scholar
  16. Costa-Dias S, Freitas V, Sousa R, Antunes C (2010) Factors influencing epibenthic assemblages in the Minho estuary (NW Iberian Peninsula). Mar Pollut Bull 61:240–246. doi: 10.1016/j.marpolbul.2010.02.020 CrossRefPubMedGoogle Scholar
  17. Crippen TL, Benbow ME, Pechal JL (2015) Microbial interactions during carrion decomposition. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, pp 31–64CrossRefGoogle Scholar
  18. Curran LM, Leighton M (2000) Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpacea. Ecol Monogr 70:101–128. doi: 10.1890/0012-9615(2000)070[0101:VRTSVI]2.0.CO;2 CrossRefGoogle Scholar
  19. DeVault TL, Rhodes OE, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234. doi: 10.1034/j.1600-0706.2003.12378.x CrossRefGoogle Scholar
  20. Doughty CE, Wolf A, Malhi Y (2013) The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat Geosci 6:761–764. doi: 10.1038/ngeo1895 CrossRefGoogle Scholar
  21. Duarte S, Pascoal C, Alves A, Correia A, Cássio F (2010) Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques. Microbiol Res 165:351–362. doi: 10.1016/j.micres.2009.06.002 CrossRefPubMedGoogle Scholar
  22. Eyster LS (1986) Shell inorganic composition and onset of Shell mineralization during bivalve and gastropod embryogenesis. Biol Bull 170:211–231CrossRefGoogle Scholar
  23. Forbes SL, Dent BB, Stuart BH (2005) The effect of soil type on adipocere formation. Forensic Sci Int 154:35–43. doi: 10.1016/j.forsciint.2004.09.108 CrossRefPubMedGoogle Scholar
  24. Henschel JR, Mahsberg D, Stumpf H (2001) Allochthonous aquatic insects increase predation and decrease herbivory in river shore food webs. Oikos 93:429–438. doi: 10.1034/j.1600-0706.2001.930308.x CrossRefGoogle Scholar
  25. Hopkins DW, Wiltshire PEJ, Turner BD (2000) Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 14:283–288. doi: 10.1016/S0929-1393(00)00063-9 CrossRefGoogle Scholar
  26. Ilarri M, Antunes C, Guilhermino L, Sousa R (2011) Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area. Biol Invasions 13:277–280. doi: 10.1007/s10530-010-9833-5 CrossRefGoogle Scholar
  27. Ilarri MI, Souza AT, Sousa R (2015) Contrasting decay rates of freshwater bivalves’ shells: aquatic versus terrestrial habitats. Limnologica 51:8–14. doi: 10.1016/j.limno.2014.10.002 CrossRefGoogle Scholar
  28. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Canadian Special Publication of Fisheries and Aquatic Sciences, pp 110–127Google Scholar
  29. Leff JW, Jones SE, Prober SM, Barberan A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA 112:10967–10972. doi: 10.1073/pnas.1508382112 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Letnic M, Tamayo B, Dickman CR (2005) The responses of mammals to La Niña (El Niño Southern Oscillation)-associated rainfall, predation, and wildfire in central Australia. J Mammal 86:689–703. doi: 10.1644/1545-1542(2005)086[0689:TROMTL]2.0.CO;2 CrossRefGoogle Scholar
  31. McDowell WG, McDowell WH, Byers JE (2017) Mass mortality of a dominant invasive species in response to an extreme climate event: implications for ecosystem function. Limnol Oceanogr 62:177–188. doi: 10.1002/lno.10384 CrossRefGoogle Scholar
  32. Medeiros AO, Pascoal C, Graça AS (2009) Diversity and activity of aquatic fungi under low oxygen conditions. Freshw Biol 54:142–149. doi: 10.1111/j.1365-2427.2008.02101.x CrossRefGoogle Scholar
  33. Melis C, Selva N, Teurlings I, Skarpe C, Linnell JDC, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Białowieża Primeval Forest, Poland. Ecol Res 22:807–813. doi: 10.1007/s11284-006-0321-4 CrossRefGoogle Scholar
  34. Meserve PL, Kelt DA, Milstead WB, Gutierrez JR (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646. doi: 10.1641/0006-3568(2003)053[0633:TYOSTA]2.0.CO;2 CrossRefGoogle Scholar
  35. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600. doi: 10.1111/j.1461-0248.2004.00606.x CrossRefGoogle Scholar
  36. Moore JW, Schindler DE, Carter JL, Fox J, Griffiths J, Holtgrieve GW (2007) Biotic control of stream fluxes: spawning salmon drive nutrient and matter export. Ecology 88:1278–1291. doi: 10.1890/06-0782 CrossRefPubMedGoogle Scholar
  37. Mota M, Sousa R, Bio A, Araújo MJ, Braga C, Antunes C (2014) Seasonal changes in fish assemblages in the River Minho tidal freshwater wetlands, NW of the Iberian Peninsula. Ann Limnol 50:185–198. doi: 10.1051/limn/2014012 CrossRefGoogle Scholar
  38. Novais A, Souza AT, Ilarri M, Pascoal C, Sousa R (2015) From water to land: how an invasive clam may function as a resource pulse to terrestrial invertebrates. Sci Total Environ 538:664–671. doi: 10.1016/j.scitotenv.2015.08.106 CrossRefPubMedGoogle Scholar
  39. Nowlin WH, Vanni MJ, Yang LH (2008) Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89:647–659. doi: 10.1890/07-0303.1 CrossRefPubMedGoogle Scholar
  40. Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics in terrestrial ecosystems. Trends Ecol Evol 15:232–237. doi: 10.1016/S0169-5347(00)01862-0 CrossRefPubMedGoogle Scholar
  41. Parkinson RA, Dias K-R, Horswell J, Greenwood P, Banning N, Tibbett M, Vass AA (2009) Microbial community analysis of human decomposition on soil. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, Netherlands, pp 379–394CrossRefGoogle Scholar
  42. Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79:637–661. doi: 10.1890/08-0972.1 CrossRefGoogle Scholar
  43. Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273. doi: 10.1128/AEM.70.9.5266-5273.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316CrossRefGoogle Scholar
  45. Putman RJ (1983) Carrion and dung: the decomposition of animal wastes. The Institute of Biology’s Studies in Biology no. 165. Edward Arnold Ltd, LondonGoogle Scholar
  46. Sabo JL, Power ME (2002) River-watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology 83:1860–1869. doi: 10.1890/0012-9658(2002)083[1860:RWEEOR]2.0.CO;2 Google Scholar
  47. Sagara N (1992) Experimental disturbances and epigeous fungi. In: Carroll GC, Wicklow DT (eds) The fungal community: its organisation and role in the ecosystem. Marcel Dekker Inc, New York, pp 427–454Google Scholar
  48. Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc Biol Sci 273:1–9. doi: 10.1098/rspb.2005.3377 CrossRefPubMedGoogle Scholar
  49. Sousa R, Guilhermino L, Antunes C (2005) Molluscan fauna in the freshwater tidal area of the River Minho estuary, NW of Iberian Peninsula. Ann Limnol 41:141–147. doi: 10.1051/limn/2005009 CrossRefGoogle Scholar
  50. Sousa R, Antunes C, Guilhermino L (2007) Species composition and monthly variation of the Molluscan fauna in the freshwater subtidal area of the River Minho estuary. Estuar Coast Shelf Sci 75:90–100. doi: 10.1016/j.ecss.2007.02.020 CrossRefGoogle Scholar
  51. Sousa R, Dias S, Freitas V, Antunes C (2008a) Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquat Conserv 18:1063–1077. doi: 10.1002/aqc.871 CrossRefGoogle Scholar
  52. Sousa R, Dias S, Guilhermino L, Antunes C (2008b) Minho River tidal freshwater wetlands: threats to faunal biodiversity. Aquat Biol 3:237–250. doi: 10.3354/ab00077 CrossRefGoogle Scholar
  53. Sousa R, Rufino M, Gaspar M, Antunes C, Guilhermino L (2008c) Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquat Conserv 18:98–110. doi: 10.1002/aqc.838 CrossRefGoogle Scholar
  54. Sousa R, Varandas S, Cortes R, Teixeira A, Lopes-Lima M, Machado J, Guilhermino L (2012) Massive die-offs of freshwater bivalves as resource pulses. Ann Limnol 48:105–112. doi: 10.1051/limn/2012003 CrossRefGoogle Scholar
  55. Sousa R, Novais A, Costa R, Strayer DL (2014) Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735:233–251. doi: 10.1007/s10750-012-1409-1 CrossRefGoogle Scholar
  56. Spann N, Harper EM, Aldridge DC (2010) The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 97:743–751. doi: 10.1007/s00114-010-0692-9 CrossRefPubMedGoogle Scholar
  57. Stokes KL, Forbes SL, Benninger LA, Carter DO, Tibbett M (2009) Decomposition studies using animal models in contrasting environments: evidence from temporal changes in soil chemistry and microbial activity. In: Ritz K, Dawson L, Miller D (eds) Criminal and environmental soil forensics. Springer, New York, pp 357–377CrossRefGoogle Scholar
  58. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, OxfordGoogle Scholar
  59. Tibbett M, Carter DO (2003) Mushrooms and taphonomy: the fungi that mark woodland graves. Mycologist 17:20–24. doi: 10.1017/S0269915X03001150 CrossRefGoogle Scholar
  60. Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122:232–239. doi: 10.1007/PL00008851 CrossRefPubMedGoogle Scholar
  61. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton Univ. Press, PrincetonGoogle Scholar
  62. Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26:129–135. doi: 10.1016/j.tree.2010.12.011 CrossRefPubMedGoogle Scholar
  63. Woff JO (1996) Population fluctuations of mast-eating rodents are correlated with production of acorns. J Mammal 77:850–856. doi: 10.2307/1382690 CrossRefGoogle Scholar
  64. Woff A, Hershey A (1999) Effects of salmon carcass decomposition on biofilm growth and wood decomposition. Can J Fish Aquat Sci 56:767–773. doi: 10.1139/f99-030 CrossRefGoogle Scholar
  65. Yamanaka T (1995a) Changes in organic matter composition of forest soil treated with a large amount of urea to promote ammonia fungi and the abilities of these fungi to decompose organic matter. Mycoscience 36:17–23. doi: 10.1007/BF02268568 CrossRefGoogle Scholar
  66. Yamanaka T (1995b) Nitrification in a Japanese red pine forest soil treated with a large amount of urea. J Jpn Forest Soc 77:232–238Google Scholar
  67. Yanai S, Kochi K (2005) Effects of salmon carcasses on experimental stream ecosystems in Hokkaido, Japan. Ecol Res 20:471–480. doi: 10.1007/s11284-005-0056-7 CrossRefGoogle Scholar
  68. Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567. doi: 10.1126/science.1103114 CrossRefPubMedGoogle Scholar
  69. Yang LH (2008) Pulses of dead periodical cicadas increase herbivory of American bellflowers. Ecology 89:1497–1502. doi: 10.1890/07-1853.1 CrossRefPubMedGoogle Scholar
  70. Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses? Ecology 89:621–634. doi: 10.1890/07-0175.1 CrossRefPubMedGoogle Scholar
  71. Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010) A meta-analysis of resource pulse-consumer interactions. Ecol Monogr 80:125–151. doi: 10.1890/08-1996.1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Adriana Novais
    • 1
  • Cláudia Pascoal
    • 1
    • 2
  • Ronaldo Sousa
    • 1
    • 3
  1. 1.Department of Biology, CBMA – Centre of Molecular and Environmental BiologyUniversity of MinhoBragaPortugal
  2. 2.Institute for Science and Innovation for Bio-sustainability (IB-S)University of MinhoBragaPortugal
  3. 3.CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal

Personalised recommendations