Biological Invasions

, Volume 19, Issue 11, pp 3201–3214 | Cite as

The unified framework for biological invasions: a forest fungal pathogen perspective

  • Michael J. Wingfield
  • Bernard Slippers
  • Brenda D. Wingfield
  • Irene Barnes
Forest Invasions

Abstract

Biological invasions in forests are growing in number and importance globally. The best studied examples are those caused by plants and animals, including insects. In contrast, forest invasions caused by microbes, including fungi, have received much lower levels of attention, particularly in the invasion biology literature. This can at least to some extent be due to the large number of these organisms involved and the fact that the majority of these have yet to be discovered and described. This is equally true for tree-infecting fungi, many of which are devastating pathogens responsible for dramatic invasions in natural and planted forests. This situation is changing through the application of molecular genetic tools that make it possible to accurately identify fungal tree pathogens, to determine their origins, pathways of movement, their modes of reproduction and change; all of which can influence invasions. The role and relevance of symbioses between tree pathogens and insects in forest invasions is also gaining increased attention. So too is our understanding that trees live in close association with large numbers of microbes that make up their holobiome. This has substantial relevance to invasion biology (Zenni et al. 2017). This commentary highlights four emerging issues that need to be considered regarding the invasions by fungal pathogens of trees and it emphasizes opportunities to better understand their relevance and impacts on natural and planted forests. A call is also made for plant pathologists to work more closely with ecologists such that fungal pathogens become more commonly integrated into invasion biology programmes.

Keywords

Invasive fungi Invasive forest pathogen (IFP) Symbioses Tree disease 

Notes

Acknowledgements

We acknowledge the DST/NRF Centre of Excellence in Tree Health Biotechnology, the National Research Foundation (South Africa) and the Tree Protection Cooperative Programme (TPCP) for financial support. We thank Dr. Carlos Rodas and Ms Izette Greyling for providing us with the photographs for Fig. 1c and Fig. 1b respectively.

References

  1. Al Adawi AO, Al Jabri RM, Deadman ML, Barnes I, Wingfield B, Wingfield MJ (2013) The mango sudden decline pathogen, Ceratocystis manginecans, is vectored by Hypocryphalus mangiferae (Coleoptera: Scolytinae) in Oman. Eur J Plant Pathol 135:243–251CrossRefGoogle Scholar
  2. Al Adawi AO, Barnes I, Khan IA, Deadman ML, Wingfield BD, Wingfield MJ (2014) Clonal structure of Ceratocystis manginecans populations from mango wilt disease in Oman and Pakistan. Australas Plant Pathol 43:393–402Google Scholar
  3. Allen EA, Humble LM (2002) Non-indigenous species introductions: a threat to Canada’s forests and forest economy. Can J Plant Pathol 24:103–110CrossRefGoogle Scholar
  4. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  5. Anagnostakis SL (1987) The effect of multiple importations of pests and pathogens on a native tree. Biol Invasions 3:245–254CrossRefGoogle Scholar
  6. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544PubMedCrossRefGoogle Scholar
  7. Barnes I, Nakabonge G, Roux J, Wingfield BD, Wingfield MJ (2005) Comparison of populations of the wilt pathogen Ceratocystis albifundus in South Africa and Uganda. Plant Pathol 54:189–195CrossRefGoogle Scholar
  8. Barnes I, Wingfield MJ, Carbone I, Kirisits T, Wingfield BD (2014) Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity. Ecol Evol 4:3642–3661PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beenken L (2017) Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61CrossRefGoogle Scholar
  10. Berbegal M, Pérez-Sierra A, Armengol J, Grünwald NJ (2013) Evidence for multiple introductions and clonality in Spanish populations of Fusarium circinatum. Phytopathology 103:851–861PubMedCrossRefGoogle Scholar
  11. Blackburn TM, Ewen JG (2017) Parasites as drivers and passengers of human-mediated biological invasions. EcoHealth 14:61. doi: 10.1007/s10393-015-1092-6
  12. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339PubMedCrossRefGoogle Scholar
  13. Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brasier CM (2000) Rise of the hybrid fungi. Nature 405:134–135PubMedCrossRefGoogle Scholar
  15. Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridisation. Bioscience 51:123–133CrossRefGoogle Scholar
  16. Brasier CM, Buck KW (2001) Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 3:223–233CrossRefGoogle Scholar
  17. Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Natl Acad Sci USA 96:5878–5883PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brasier CM, Kirk SA, Delcan J, Cooke DEL, Jung T, In’t Veld WAM (2004) Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol Res 108:1172–1184PubMedCrossRefGoogle Scholar
  19. Brawner J, Japarudin Y, Lapammu M, Rauf R, Boden D, Wingfield MJ (2015) Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. South For J For Sci 77:83–90Google Scholar
  20. Burdon JJ, Thrall PH, Ericson L (2006) The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39PubMedCrossRefGoogle Scholar
  21. Burgess TI, Wingfield MJ (2017) Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience 67:14–25CrossRefGoogle Scholar
  22. Butin H (1995) Tree diseases and disorders: causes, biology and control in forest and amenity trees. Oxford University Press, OxfordGoogle Scholar
  23. Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol 39:463–466CrossRefGoogle Scholar
  24. Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR (2016) Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions 18:127–144CrossRefGoogle Scholar
  25. Chen S-F, Gryzenhout M, Roux J, Xie Y, Wingfield MJ, Zhou XD (2010) Identification and pathogenicity of Chrysoporthe cubensis on Eucalyptus and Syzygium spp. in South China. Plant Dis 94:1143–1150CrossRefGoogle Scholar
  26. Chu-Chou M (1979) Mycorrhizal fungi of Pinus radiata in New Zealand. Soil Biol Biochem 11:557–562CrossRefGoogle Scholar
  27. Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825CrossRefGoogle Scholar
  28. Crous PW, Groenewald EZ, Slippers B, Wingfield MJ (2016) Global food and fibre security threatened by current inefficiencies in fungal identification. Philos Trans R Soc B Biol Sci 371:20160024Google Scholar
  29. Crous CJ, Burgess TI, Le Roux JJ, Richardson DM, Slippers B, Wingfield MJ (2017) Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees. AoB Plant 9:plw081. doi: 10.1093/aobpla/plw081
  30. De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ (2014) Redefining ceratocystis and allied genera. Stud Mycol 79:187–219Google Scholar
  31. Desprez-Loustau M-L, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480PubMedCrossRefGoogle Scholar
  32. Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484PubMedCrossRefGoogle Scholar
  33. Díez J (2005) Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biol Invasions 7:3–15CrossRefGoogle Scholar
  34. Drenkhan R, Tomešová-Haataja V, Fraser S, Bradshaw RE, Vahalik P, Mullett M, Martín-García J, Bulman L, Wingfield MJ, Kirisits T, Cech TL, Schmitz S, Baden R, Tubby K, Brown A, Georgieva M, Woods A, Ahumada R, Jankovsky L, Thomsen IM, Adamson K, Marcais B, Vuorinen M, Tsopelas P, Koltay A, Halasz A, La Porta N, Anselmi N, Kiesnere R, Markovskaja S, Kačergius A, Papazova-Anakieva I, Risteski M, Sotirovski K, Lazarević K, Solheim H, Boroń P, Braganca H, Chira D, Musolin DL, Selikhovkin AV, Bulgakov TS, Keča N, Karadžić D, Galovic V, Pap P, Markovic M, Poljakovic Pajnik L, Vasic V, Ondrušková E, Piskur B, Sadiković D, Diez-Casero JJ, Solla A, Millberg H, Stenlid J, Angst A, Queloz V, Lehtijärvi A, Doğmuş-Lehtijärvi HT, Oskay F, Davydenko K, Meshkova V, Craig D, Woodward S, Barnes I (2016) Global geographic distribution and host range of Dothistroma species: a comprehensive review. For Pathol 46:408–442CrossRefGoogle Scholar
  35. Drenkhan R, Solheim H, Bogacheva A, Riit T, Adamson K, Drenkhan T, Maaten T, Hietala AM (2017) Hymenoscyphus fraxineus is a leaf pathogen of local Fraxinus species in the Russian Far East. Plant Pathol 66:490–500CrossRefGoogle Scholar
  36. Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome. Trends Genet 22:375–387PubMedCrossRefGoogle Scholar
  37. Duncan RP, Blackburn TM, Sol D (2003) The Ecology of bird introductions. Annu Rev Ecol Evol Syst 34:71–98CrossRefGoogle Scholar
  38. Dutech C, Barres B, Bridier J, Robin C, Milgroom MG, Ravignes V (2012) The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol Ecol 21:3931–3946PubMedCrossRefGoogle Scholar
  39. Elton CS (1958) The ecology of invasions by plants and animals. The University of Chicago Press, Chicago, p 181CrossRefGoogle Scholar
  40. Érsek T, Nagy ZÁ (2008) Species hybrids in the genus Phytophthora with emphasis on the alder pathogen Phytophthora alni: a review. Eur J Plant Pathol 122:31–39CrossRefGoogle Scholar
  41. Et-Touil K, Bernier L, Beaulieu J, Berube JA, Hopkin A, Hamelin RC (1999) Genetic structure of Cronartium ribicola populations in Eastern Canada. Phytopathology 89:915–919PubMedCrossRefGoogle Scholar
  42. Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027Google Scholar
  43. Fourie A, Wingfield MJ, Wingfield BD, Thu PQ, Barnes I (2016) A possible centre of diversity in South East Asia for the tree pathogen, Ceratocystis manginecans. Infect Genet Evol 41:73–83Google Scholar
  44. Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield Iii AE, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224CrossRefGoogle Scholar
  45. Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown, endophytic fungi in western white pine. Proc Natl Acad Sci USA 101:10107–10112PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ghelardini L, Pepori AL, Luchi N, Capretti P, Santini A (2016) Drivers of emerging fungal diseases of forest trees. For Ecol Manag 381:235–246CrossRefGoogle Scholar
  47. Ghelardini L, Luchi N, Pecori F, Pepori AL, Danit R, Della Rocca G, Capretti P, Tsopelas P, Santini A (2017) Ecology of invasive forest pathogens. Biol Invasions (this issue) Google Scholar
  48. Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Annu Rev Phytopathol 16:287–307CrossRefGoogle Scholar
  49. Gibbs J, Brasier CM, Webber J (1994) Dutch elm disease in Britain. Forestry Authority, Research Division, Great BritainGoogle Scholar
  50. Giblin F, Carnegie AJ (2014) Puccinia psidii (Myrtle Rust)–Global host list. Version current at 24 Sept 2014. https://www.anbg.gov.au/anpc/resources/Myrtle_Rust.html
  51. Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T (2015) The population biology of fungal invasions. Mol Ecol 24:1969–1986PubMedCrossRefGoogle Scholar
  52. Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy—a review. Australas Plant Pathol 36:1–16CrossRefGoogle Scholar
  53. Gonthier P, Nicolotti G, Linzer R, Guglielmo F, Garbelotto M (2007) Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon. Mol Ecol 16:1389–1400PubMedCrossRefGoogle Scholar
  54. Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2016) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138CrossRefGoogle Scholar
  55. Gryzenhout M, Rodas CA, Mena Portales J, Clegg P, Wingfield BD, Wingfield MJ (2006) Novel hosts of the Eucalyptus canker pathogen Chrysoporthe cubensis and a new Chrysoporthe species from Colombia. Mycol Res 110:833–845PubMedCrossRefGoogle Scholar
  56. Gryzenhout M, Wingfield BD, Wingfield MJ (2009) Taxonomy, phylogeny, and ecology of bark-inhabiting and tree-pathogenic fungi in the Cryphonectriaceae. American Phytopathological Society (APS Press), Saint PaulGoogle Scholar
  57. Hajek AE, Hurley BP, Kennis M, Garnas JR, Bush SJ, Wingfield MJ, van Lenteren JC, Cock MJW (2016) Exotic biological control agents. A solution or a contribution to arthropod invasions. Biol Invasions 18:953–969CrossRefGoogle Scholar
  58. Hamelin RC, Allaire M, Bergeron MJ, Nicole MC, Lecours N (2005) Molecular epidemiology of white pine blister rust: recombination and spatial distribution. Phytopathology 95:793–799PubMedCrossRefGoogle Scholar
  59. Hanula JL, Mayfield AE, Fraedrich SW, Rabaglia RJ (2008) Biology and host associations of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southeastern United States. J Econ Entomol 101:1276–1286PubMedCrossRefGoogle Scholar
  60. Harrington TC, Mcnew DL (1997) Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete. Curr Genet 32:52–59PubMedCrossRefGoogle Scholar
  61. Harrington TC, Yun HY, Lu S-S, Goto H, Aghayeva DN, Fraedrich SW (2011) Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036PubMedCrossRefGoogle Scholar
  62. Hausner G, Reid J, Klassen GR (1993a) On the subdivision of Ceratocystis sl, based on partial ribosomal DNA sequences. Can J Bot 71:52–63CrossRefGoogle Scholar
  63. Hausner G, Reid J, Klassen GR (1993b) On the phylogeny of Ophiostoma, Ceratocystis ss, and Microascus, and relationships within Ophiostoma based on partial ribosomal DNA sequences. Can J Bot 71:1249–1265CrossRefGoogle Scholar
  64. Hawksworth DL (2015) Proposals to clarify and enhance the naming of fungi under the international code of nomenclature for algae, fungi, and plants. IMA Fungus 6:199PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai F-Y, De Beer W, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess TI, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel H-M, Van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Chirlei J, Glienke C, Gräfenhan T, Groenewald M, Groenewald JZ, De Gruyter J, Guého-Kellermann E, Guo L-D, Hibbett DS, Hong S-B, De Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau P-E, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh J, Norvell L, Ozerskaya SM, Öziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, SchnüRer J, Schroers H-J, Shivas RG, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, Van Raak M, Varga J, Vasco A, Verkley G, Videira SIR, De Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hayward J, Horton TR, Pauchard A, Nuñez MA (2015) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444PubMedCrossRefGoogle Scholar
  67. Heath RN, Gryzenhout M, Roux J, Wingfield MJ (2006) Discovery of the Cryphonectria canker pathogen on native Syzygium species in South Africa. Plant Dis 90:433–438CrossRefGoogle Scholar
  68. Heath RN, Wingfield MJ, Van Wyk M, Roux J (2009) Insect associates of Ceratocystis albifundus and patterns of association in a native savanna ecosystem in South Africa. Environ Entomol 38:356–364PubMedCrossRefGoogle Scholar
  69. Heitman J, Sun S, James TY (2013) Evolution of fungal sexual reproduction. Mycologia 105:1–27PubMedCrossRefGoogle Scholar
  70. Hepting GH (1974) Death of the American chestnut. J For Hist 18:60–67Google Scholar
  71. Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems. Proc R Soc Lond B Biol Sci 278:2866–2873CrossRefGoogle Scholar
  72. Hunter GC, Van Der Merwe NA, Burgess TI, Carnegie AJ, Wingfield BD, Crous PW, Wingfield MJ (2008) Global movement and population biology of Mycosphaerella nubilosa infecting leaves of cold-tolerant Eucalyptus globulus and E. nitens. Plant Pathol 57:235–242Google Scholar
  73. Hunter GC, Crous PW, Carnegie AJ, Wingfield MJ (2009) Teratosphaeria nubilosa, a serious leaf disease pathogen of Eucalyptus spp. in native and introduced areas. Mol Plant Pathol 10:1–14PubMedCrossRefGoogle Scholar
  74. Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933CrossRefGoogle Scholar
  75. Ioos R, Andrieux A, Marçais B, Frey P (2006) Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genet Biol 43:511–529PubMedCrossRefGoogle Scholar
  76. Jacobi WR, Koski RD, Negron JF (2013) Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi. For Pathol 43:232–237CrossRefGoogle Scholar
  77. Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates and agents of blue-stain. American Phytopathological Society Press, Saint PaulGoogle Scholar
  78. Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay K-A, Slippers B (2013) Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS ONE 8:e81718PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kinloch BB Jr (2003) White pine blister rust in North America: past and prognosis. Phytopathology 93:1044–1047PubMedCrossRefGoogle Scholar
  80. Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Bark and wood boring insects in living trees in Europe, a synthesis: Springer, pp 181–236Google Scholar
  81. Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2014) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126–138Google Scholar
  82. Lee DH, Roux J, Wingfield BD, Wingfield MJ (2015) Variation in growth rates and aggressiveness of naturally occurring self-fertile and self-sterile isolates of the wilt pathogen Ceratocystis albifundus. Plant Pathol 64:1103–1109CrossRefGoogle Scholar
  83. Lee D-H, Roux J, Wingfield BD, Barnes I, Mostert L, Wingfield MJ (2016) The genetic landscape of Ceratocystis albifundus populations in South Africa reveals a recent fungal introduction event. Fungal Biol 120:690–700PubMedCrossRefGoogle Scholar
  84. Lin X, Heitman J (2007) Mechanisms of homothallism in fungi and transitions between heterothallism and homothallism. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implication. American Society of Microbiology Press, Washington, pp 35–57Google Scholar
  85. Lockwood JL, Hoopes MF, Marchetti MP (2008) Invasion ecology. Blackwell Publishing Ltd, HobokenGoogle Scholar
  86. Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11:81–96CrossRefGoogle Scholar
  87. Marsberg A, Kemler M, Jami F, Nagel JH, Postma-Smidt A, Naidoo S, Wingfield MJ, Crous PW, Spatafora JW, Hesse CN, Robbertse B, Slippers B (2017) Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Mol Plant Pathol 18:477–488Google Scholar
  88. Mcdonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Annu Rev Phytopathol 40:349–379PubMedCrossRefGoogle Scholar
  89. Mctaggart AR, Van Der Nest MA, Steenkamp ET, Roux J, Slippers B, Shuey LS, Wingfield MJ, Drenth A (2016) Fungal genomics challenges the dogma of name-based biosecurity. PLoS Pathog 12:e1005475PubMedPubMedCentralCrossRefGoogle Scholar
  90. Milgroom MG, Lipari SE, Ennos RA, Liu Y-C (1993) Estimation of the outcrossing rate in the chestnut blight fungus, Cryphonectria parasitica. Heredity 70:385–392CrossRefGoogle Scholar
  91. Milgroom MG, Sotirovski K, Spica D, Davis JE, Brewer MT, Milev M, Cortesi P (2008) Clonal population structure of the chestnut blight fungus in expanding ranges in southeastern Europe. Mol Ecol 17:4446–4458PubMedCrossRefGoogle Scholar
  92. Müller MM, Hamberg L, Hantula J (2016) The susceptibility of European tree species to invasive Asian pathogens: a literature based analysis. Biol Invasions 18:1–11CrossRefGoogle Scholar
  93. Nakabonge G, Roux J, Gryzenhout M, Wingfield MJ (2006) Chrysoporthe canker pathogens on Eucalyptus and Syzygium spp. in eastern and southern Africa. Plant Dis 90:734–740CrossRefGoogle Scholar
  94. Ndlovu J, Richardson DM, Wilson JRU, Le Roux JJ (2013) Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J Biogeogr 40:1240–1251CrossRefGoogle Scholar
  95. Newcombe G, Stirling B, Mcdonald S, Bradshaw HD (2000) Melampsora × columbiana, a natural hybrid of M. medusae and M. occidentalis. Mycol Res 104:261–274CrossRefGoogle Scholar
  96. Ni M, Feretzaki M, Sun S, Wang X, Heitman J (2011) Sex in fungi. Annu Rev Genet 45:405–430Google Scholar
  97. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206PubMedCrossRefGoogle Scholar
  98. Pegg GS, Gryzenhout M, O’dwyer C, Drenth A, Wingfield MJ (2010) The Eucalyptus canker pathogen Chrysoporthe cubensis discovered in eastern Australia. Australas Plant Pathol 39:343–349CrossRefGoogle Scholar
  99. Pérez G, Slippers B, Wingfield BD, Hunter GC, Wingfield MJ (2010) Micro- and macrospatial scale analyses illustrates mixed mating strategies and extensive geneflow in populations of an invasive haploid pathogen. Mol Ecol 19:1801–1813PubMedCrossRefGoogle Scholar
  100. Perkins DD (1987) Mating-type switching in filamentous ascomycetes. Genetics 115:215–216Google Scholar
  101. Pirttilä AM, Frank C (2011) Endophytes of forest trees: biology and applications, vol 80. Springer, BerlinGoogle Scholar
  102. Ploetz RC, Hulcr J, Wingfield MJ, De Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872CrossRefGoogle Scholar
  103. Prospero S, Cleary M (2017) Effects of host variability on the spread of invasive forest diseases. Forests 8:80. doi: 10.3390/f8030080 CrossRefGoogle Scholar
  104. Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527Google Scholar
  105. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  106. Rodríguez-Echeverría S, Crisóstomo JA, Nabais C, Freitas H (2009) Belowground mutualists and the invasive ability of Acacia longifolia in coastal dunes of Portugal. Biol Invasions 11:651–661CrossRefGoogle Scholar
  107. Ross-Davis AL, Graça RN, Alfenas AC, Peever TL, Hanna JW, Uchida JY, Hauff RD, Kadooka CH, Kim MS, Cannon PG, Namba S, Minato N, Simento S, Pérez CA, Rayamajhi MB, Morán M, Lodge DJ, Arguedas M, Medel-Ortiz R, López-Ramirez MA, Tennant P, Glen M, Klopfenstein NB (2013) Tracking the distribution of Puccinia psidii genotypes that cause rust disease on diverse Myrtaceous trees and shrubs. In: Chadwick K, Palacios P, comps. Proceedings of the 61st Annual Western International Forest Disease Work Conference, 6–11 October 2013; Waterton Lakes National Park, AB, Canada. U.S. Department of Agriculture, Forest Service, Forest Health Protection, Washington, DC, pp 131–137Google Scholar
  108. Roux J, Wingfield MJ (2009) Ceratocystis species: emerging pathogens of non-native plantation Eucalyptus and Acacia species. South For J For Sci 71:115–120Google Scholar
  109. Roux J, Wingfield MJ (2013) Ceratocystis species on the African continent, with particular reference to C. albifundus, an African species in the C. fimbriata sensu lato species complex. The Ophiostomatoid fungi: expanding Frontiers. Biodivers Ser 12:131–138Google Scholar
  110. Roux J, Wingfield MJ, Byabashaija DM (2001) First report of Ceratocystis wilt of Acacia mearnsii in Uganda. Plant Dis 85:1029–1029CrossRefGoogle Scholar
  111. Roux J, Meke G, Kanyi B, Mwangi L, Mbaga A, Hunter GC, Nakabonge G, Heath RN, Wingfield MJ (2005) Diseases of plantation forestry trees in eastern and southern Africa. S Afr J Sci 101:409Google Scholar
  112. Roux J, Heath RN, Labuschagne L, Nkuekam GK, Wingfield MJ (2007) Occurrence of the wattle wilt pathogen, Ceratocystis albifundus on native South African trees. For Pathol 37:292–302CrossRefGoogle Scholar
  113. Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko R, Brasier C (2014) Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465CrossRefGoogle Scholar
  114. Sakai AK, Allerndof FW, Holt JS (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  115. Santana QC, Coetzee MPA, Wingfield BD, Wingfield MJ, Steenkamp ET (2016) Nursery linked plantation-outbreaks and evidence for multiple introductions of the pitch canker pathogen Fusarium circinatum into South Africa. Plant Pathol 65:357–368CrossRefGoogle Scholar
  116. Santini A, Ghelardini L, Pace CD, Desprez-Loustau M-L, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250PubMedCrossRefGoogle Scholar
  117. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246PubMedPubMedCentralCrossRefGoogle Scholar
  118. Seifert KA, De Beer ZW, Wingfield MJ (2013) The ophiostomatoid fungi: expanding frontiers. CBS-KNAW Fungal Biodiversity Centre, UtrechtGoogle Scholar
  119. Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89CrossRefGoogle Scholar
  120. Simpson JA, Thomas K, Grgurinovic CA (2006) Uredinales species pathogenic on species of Myrtaceae. Australas Plant Pathol 35:549–562CrossRefGoogle Scholar
  121. Sinclair WA, Campana RJ (1978) Dutch elm disease. Perspectives after 60 years, vol 8. Cornell University Agricultural Experiment Station, IthacaGoogle Scholar
  122. Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272PubMedCrossRefGoogle Scholar
  123. Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol Rev 21:90–106CrossRefGoogle Scholar
  124. Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9CrossRefGoogle Scholar
  125. Spiers AG, Hopcroft DH (1994) Comparative studies of the poplar rusts Melampsora medusae, M. larisi-populina and their interspecific hybrid M. medusae-populina. Mycol Res 98:889–903CrossRefGoogle Scholar
  126. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Irinyi L, Smits D, Renfurm R, Verkley GJM, Groenewald M, Chaduli D (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Pers Mol Phylogeny Evol Fungi 35:242–263CrossRefGoogle Scholar
  127. Sun J, Lu M, Gillette NE, Wingfield MJ (2013) Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol 58:293–311PubMedCrossRefGoogle Scholar
  128. Taerum SJ, Duong TA, De Beer ZW, Gillette N, Sun J-H, Owen DR, Wingfield MJ (2013) Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS ONE 8:e78126PubMedPubMedCentralCrossRefGoogle Scholar
  129. Taerum SJ, Konečný A, Beer ZW, Cibrián-Tovar D, Wingfield MJ (2016) Population genetics and symbiont assemblages support opposing invasion scenarios for the red turpentine beetle (Dendroctonus valens). Biol J Linn Soc. doi: 10.1111/bij.12781 Google Scholar
  130. Taerum SJ, Hoareau TB, Duong TA, De Beer ZW, Jankowiak RJ, Wingfield MJ (2017) Putative origins of the fungus Leptographium procerum. Fungal Biol 121:82–94PubMedCrossRefGoogle Scholar
  131. Tarigan M, Roux J, Van Wyk M, Tjahjono B, Wingfield MJ (2011) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. South Afr J Bot 77:292–304CrossRefGoogle Scholar
  132. Taylor JW (2011) One fungus = One name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus 2:113–120PubMedPubMedCentralCrossRefGoogle Scholar
  133. Taylor JW, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246PubMedCrossRefGoogle Scholar
  134. Tsopelas P, Santini A, Wingfield MJ, de Beer ZW (2017) Canker stain: a lethal disease destroying iconic plane trees. Plant Dis 101:645–658Google Scholar
  135. Van Der Merwe NA, Steenkamp ET, Rodas C, Wingfield BD, Wingfield MJ (2013) Host switching between native and non-native trees in a population of the canker pathogen Chrysoporthe cubensis from Colombia. Plant Pathol 62:642–648CrossRefGoogle Scholar
  136. Van Wyk M, Al Adawi AO, Khan IA, Deadman ML, Al Jahwari AA, Wingfield BD, Ploetz R, Wingfield MJ (2007) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Divers 27:213–230Google Scholar
  137. Webber, J. F.; C. M. Brasier, 1984: Transmission of Dutch elm disease: a study of the processes involved [Scolytidae]. Symposium series-British Mycological SocietyGoogle Scholar
  138. Wilken PM, Steenkamp ET, Wingfield MJ, De Beer ZW, Wingfield BD (2014) DNA loss at the Ceratocystis fimbriata mating locus results in self-sterility. PLoS ONE 9:e92180PubMedPubMedCentralCrossRefGoogle Scholar
  139. Williamson M (1996) Biological invasions, vol 15. Springer, BerlinGoogle Scholar
  140. Wilson AM, Wilken PM, Van Der Nest MA, Steenkamp ET, Wingfield MJ, Wingfield BD (2015) Homothallism: an umbrella term for describing diverse sexual behaviours. IMA Fungus 6:207–214PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wingfield MJ (2003) Daniel McAlpine memorial lecture increasing threat of diseases to exotic plantation forests in the Southern Hemisphere: lessons from Cryphonectria canker. Australas Plant Pathol 32:133–139CrossRefGoogle Scholar
  142. Wingfield MJ, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon TR, Wingfield BD, Coutinho TA (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Australas Plant Pathol 37:319–334CrossRefGoogle Scholar
  143. Wingfield MJ, Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. NZ J For Sci 40:S95–S103Google Scholar
  144. Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 13:604–613PubMedCrossRefGoogle Scholar
  145. Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:9502–9507CrossRefGoogle Scholar
  146. Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions 18:1045–1056CrossRefGoogle Scholar
  147. Wingfield MJ, Barnes I, De Beer ZW, Roux J, Wingfield BD, Taerum SJ (2017) Novel associations between ophiostomatoid fungi, insects and tree hosts driving tree invasions: current status—future prospects. Biol Invasions (this issue) Google Scholar
  148. Witthuhn RC, Harrington TC, Wingfield BD, Steimel JP, Wingfield MJ (2000) Deletion of the MAT-2 mating-type gene during uni-directional mating-type switching in Ceratocystis. Curr Genet 38:48–52PubMedCrossRefGoogle Scholar
  149. Wood AR (2012) Uromycladium tepperianum (a gall-forming rust fungus) causes a sustained epidemic on the weed Acacia saligna in South Africa. Australas Plant Pathol 41:255–261CrossRefGoogle Scholar
  150. Woodward S, Stenlid J, Karjalainen R, Hüttermann A (1998) Heterobasidion annosum: biology, ecology, impact and control. Cab International, WallingfordGoogle Scholar
  151. Zenni RD, Dickie IA, Wingfield MJ, Hirsch H, Crous CJ, Meyerson LA, Burgess TI, Zimmermann TG, Klock MM, Siemann E, Erfmeier A, Aragon R, Moniti L, Le Roux JJ (2017) Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB Plants 9:plw085Google Scholar
  152. Zhong S, Yang B, Alfenas AC (2008) Permanent genetic resources: development of microsatellite markers for the guava rust fungus, Puccinia psidii. Mol Ecol Res 8:348–350CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations