Biological Invasions

, Volume 19, Issue 7, pp 2125–2141 | Cite as

Genetic differentiation between introduced Central European sika and source populations in Japan: effects of isolation and demographic events

  • Jarmila Krojerová-Prokešová
  • Miroslava Barančeková
  • Yukichika Kawata
  • Tatsuo Oshida
  • Hiromasa Igota
  • Petr Koubek
Original Paper

Abstract

Japanese sika deer (Cervus nippon nippon) were introduced at the turn of nineteenth and twentieth century to many countries in Eurasia, North America and Australasia. Subsequently, free-living invasive populations have become established in several countries, including the Czech Republic, where the expanding sika population causes serious problems through overgrazing, damage through browsing and through competition and hybridisation with native red deer. 122 Japanese and 221 Czech samples were used to examine the genetic diversity, genetic structure, and the level of genetic differentiation between native populations and those introduced to the Czech Republic. Analyses of 22 microsatellite loci revealed, for both countries, evidence of isolation by distance and clear sub-structuring of populations, different from patterns previously revealed by mtDNA markers. The high number of private alleles (58 within the Czech Republic and 84 within Japan), the Fst values, factorial correspondence analysis and Bayesian clustering support a high level of divergence between the source and introduced populations. Genetic variability was generally low due to recent demographic events (founder effect in the Czech population, bottlenecks in Japanese populations); however, the values of expected heterozygosity differed greatly between subpopulations and were not the lowest in the introduced Czech populations. Multiple introductions, rapid population growth, and possible hybridisation with red deer seem to have helped the successful expansion of sika within the Czech Republic. The results also indicate that male-mediated gene flow and human-mediated translocations have significantly influenced the current genetic structure of native sika populations in Japan.

Keywords

Bottleneck Founder effect Genetic diversity Invasion Microsatellite loci 

Supplementary material

10530_2017_1424_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1435 kb)

References

  1. Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190. doi:10.1002/zoo.1430050212 CrossRefGoogle Scholar
  2. Allendorf FW, Leary RF (1986) Heterozygosity and fitness in animals. In: Soule ME (ed) Conservation Biology. Sinauer, Sunderland, pp 57–76Google Scholar
  3. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  4. Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265PubMedCrossRefGoogle Scholar
  5. Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc B 353:177–186CrossRefGoogle Scholar
  6. Apollonio M, Scandura M, Sprem N (2014) Reintroductions as a management tool for European Ungulates. In: Putman R, Apollonio M (eds) Behaviour and management of European Ungulates. Whittles Publishing, Dunbeath, pp 46–77Google Scholar
  7. Barančeková M, Krojerová-Prokešová J, Voloshina IV, Myslenkov AI, Kawata Y, Oshida T, Lamka J, Koubek P (2012) The origin and genetic variability of the Czech sika deer population. Ecol Res 27:991–1003CrossRefGoogle Scholar
  8. Barrett SCH (1996) The reproductive biology and genetics of island plants. Philos T R Soc Lond B 351:725–733CrossRefGoogle Scholar
  9. Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions. Cambridge University Press, New York, pp 21–33Google Scholar
  10. Bartoš L (2009) Sika deer in continental Europe. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 573–594CrossRefGoogle Scholar
  11. Bartoš L, Žirovnický J (1981) Hybridisation between red and sika deer. II. Phenotype analysis. Zool Anz 207:271–287Google Scholar
  12. Bartoš L, Hyanek J, Žirovnický J (1981) Hybridisation between red and sika deer. I. Craniological analysis. Zool Anz 207:260–270Google Scholar
  13. Baskin Y (2002) A plague of rats and rubbervines. Island Press, Shearwater Books, WashingtonGoogle Scholar
  14. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000, Universite de Montpellier II, Montpellier, FranceGoogle Scholar
  15. Bonhomme M, Blancher A, Cuartero S, Chikhi L, Crouau-Roy B (2008) Origin and number of founders in an introduced insular primate: estimation from nuclear genetic data. Mol Ecol 17:1009–1019PubMedCrossRefGoogle Scholar
  16. Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet 11:463–478CrossRefGoogle Scholar
  17. Clout MN, Russell JC (2008) The invasion ecology of mammals: a global perspective. Wildl Res 35:180–184CrossRefGoogle Scholar
  18. Cook CE, Wang Y, Sensabaugh G (1999) A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Mol Phylogenet Evol 12:47–56PubMedCrossRefGoogle Scholar
  19. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  20. Cox GW (2004) Alien species and evolution. Island Press, WashingtonGoogle Scholar
  21. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. PNAS 91:3166–3170PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449PubMedCrossRefGoogle Scholar
  23. Dvořák S (2011) Telemetric monitoring of Japanese sika in hunting district Hradiště. J VLS 6:4–9 (In Czech) Google Scholar
  24. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  25. Ellestrand NC, Elam DR (1993) Population genetic consequences of small population size: implication for plant conservation. Annu Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  26. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants. PNAS 97:7043–7050PubMedPubMedCentralCrossRefGoogle Scholar
  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  28. Fautley R, Coulson T, Savolainen V (2012) A comparative analysis of the factors promoting deer invasion. Biol Invasions 14:2271–2281. doi:10.1007/s10530-012-0228-7 CrossRefGoogle Scholar
  29. Feulner PG, Bielfeldt W, Zachos FE, Bradvarovic J, Eckert I, Hartl GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306PubMedCrossRefGoogle Scholar
  30. Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385PubMedCrossRefGoogle Scholar
  31. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Press Syndicate for the Univ. of Cambridge, CambridgeCrossRefGoogle Scholar
  32. Frantz AC, Pourtois JT, Heuertz M, Schley L, Flamand MC, Krier A, Bertouille S, Chaumont F, Burke T (2006) Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Mol Ecol 15:3191–3203PubMedCrossRefGoogle Scholar
  33. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  34. Goodman SJ, Tamate HB, Wilson R et al (2001) Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol 10:1357–1370PubMedCrossRefGoogle Scholar
  35. Goossens B, Chikhi L, Ancrenaz M, Lackman-Ancrenaz I, Andau P, Bruford MW (2006) Genetic signature of anthropogenic population collapse in orangutans. PLoS Biol 4(2):e25. doi:10.1371/journal.pbio.0040025 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet 1995Google Scholar
  37. Goudet J, Raymond M, de Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedPubMedCentralGoogle Scholar
  38. Haanes H, Røed KH, Perez-Espona S, Rosef O (2011) Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildlife Res 576:1137–1150CrossRefGoogle Scholar
  39. Hajji GM, Zachos FE, Charfi-Cheikrouha F, Hartl GB (2007) Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim Conserv 10:229–235CrossRefGoogle Scholar
  40. Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  41. Hedrick PW (2000) Genetics of populations. Jones and Bartlett Publishers, SudburyGoogle Scholar
  42. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  43. Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359(1442):183–195PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB (2006) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701CrossRefGoogle Scholar
  45. Igota H, Sakuragi M, Uno H (2009) Seasonal Migration of Sika Deer on Hokkaido Island, Japan. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 251–272CrossRefGoogle Scholar
  46. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233 PubMedCrossRefGoogle Scholar
  47. Kaeuffer R, Coltman DW, Chapuis J-L, Pontier D, Reale D (2007) Unexpected heterozygosity in an island mouflon population founded by a single pair of individuals. Proc R Soc B 274:527–533PubMedCrossRefGoogle Scholar
  48. Kaji K (1995) Deer eruptions—a case study in Hokkaido, Japan. Honyurui Kagaku (Mammalian Science) 35:35–43 (In Japanese with English summary) Google Scholar
  49. Kaji K, Matsuda H, Uno H, Hirakawa H, Tamada K, Saito T (1998) Sika deer management in Hokkaido. Honyurui Kagaku (Mammalian Science) 38:301–313 (In Japanese with English summary) Google Scholar
  50. Kawamura Y (2009) Fossil record of sika deer in Japan. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 11–25CrossRefGoogle Scholar
  51. Kekkonen J, Wikström M, Brommer JE (2012) Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS ONE 7(9):e43482. doi:10.1371/journal.pone.0043482 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Komárek J (1945) The game management in the Czech Republic. ČIN Prague, PragueGoogle Scholar
  53. Krojerova-Prokešová J, Barančeková M, Voloshina I, Myslenkov A, Lamka J, Koubek P (2013) Dybowski’s sika deer (Cervus nippon hortulorum): genetic divergence between natural primorian and introduced Czech populations. J Hered 104:312–326PubMedCrossRefGoogle Scholar
  54. Krojerová-Prokešová J, Barančeková M, Voloshina IV, Kawata Y, Oshida T, Igota H, Lamka J, Koubek P (2010).Sika and red deer populations in the Czech Republic: Is there any evidence of their crossbreeding in captive and/or in free-living populations? In: Werner-Flueck JS and Charrier A (eds) Advances and challenges in deer biology. Proceedings of the 7th International Deer Biology Congress, 1.8–6.8.2010, Huilo Huilo Reserve, Chile, pp 55–56Google Scholar
  55. Krojerová-Prokešová J, Barančeková M, Koubek P (2015) Admixture of Eastern and Western European red deer lineages as a result of postglacial recolonization of the Czech Republic (Central Europe). J Hered 106:375–385PubMedCrossRefGoogle Scholar
  56. Kuehn R, Schroeder W, Pirchner F, Rottman O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genetics 4:157–166CrossRefGoogle Scholar
  57. Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437. doi:10.2307/2410812 PubMedCrossRefGoogle Scholar
  58. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  59. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  60. Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  61. Manel S, Gaggiotti O, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142PubMedCrossRefGoogle Scholar
  62. Mank JE, Avise JC (2003) Microsatellite variation and differentiation in North Atlantic eels. J Hered 94:310–314PubMedCrossRefGoogle Scholar
  63. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689PubMedPubMedCentralGoogle Scholar
  64. McCullough DR, Takatsuki S, Kaji K (2009) Sika deer: biology and management of native and introduced populations. Springer, TokyoCrossRefGoogle Scholar
  65. McDevitt AD, Edwards CJ, O’Toole P, O’Sullivan P, O’Reilly C, Carden RF (2009) Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm Biol 74:263–273CrossRefGoogle Scholar
  66. McNeely JA, Mooney HA, Neville LE, Schei P, Waage JK (2001) A global strategy on invasive alien species. CAB International, WallingfordGoogle Scholar
  67. Merilä J, Björklund M, Baker AJ (1996) The successful founder: genetics of introduced Carduelis chloris (greenfinch) populations in New Zealand. Heredity 77:410–422CrossRefGoogle Scholar
  68. Nagata J (2009) Two genetically distinct lineages of the Japanese sika deer based on mitochondrial control regions. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 27–41CrossRefGoogle Scholar
  69. Nagata J, Masuda R, Yoshida MC (1995) Nucleotide sequences of the cytochrome b and 12S rRNA in the Japanese sika deer Cervus nippon. J Mammal Soc Japan 20:1–8Google Scholar
  70. Nagata J, Masuda R, Kaji K, Ochiai K, Asada M, Yoshida MC (1998) Microsatellite DNA variations of sika deer, Cervus nippon, in Hokkaido and Chiba. Mammal Study 23:95–101CrossRefGoogle Scholar
  71. Nagata J, Masuda R, Tamate HB, Si Hamasaki, Ochiai K, Asada M, Tatsuzawa S, Suda K, Tado H, Yoshida MC (1999) Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 13:511–519. doi:10.1006/mpev.1999.0668 PubMedCrossRefGoogle Scholar
  72. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10PubMedCrossRefGoogle Scholar
  73. Nielsen EK, Olesen CR, Pertoldi C, Gravlund P, Barker JSF, Mucci N, Randi E, Loeschcke V (2008) Genetic structure of the Danish red deer (Cervus elaphus). Biol J Linn Soc 95:688–701CrossRefGoogle Scholar
  74. Nyman T, Valtonen M, Aspi J, Ruokonen M, Kunnasranta M, Palo JU (2014) Demographic histories and genetic diversities of Fennoscandian marine and landlocked ringed seal subspecies. Ecol Evol 4:3420–3434PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nyström V, Angerbjörn A, Dalén L (2006) Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114:84–94CrossRefGoogle Scholar
  76. Ohtaishi N (1986) Preliminary memorandum of classification, distribution and geographic variation on sika deer. Honyurui Kagaku (Mammalian Science) 53:13–17 (In Japanese with English summary) Google Scholar
  77. Ou W, Takekawa S, Yamada T, Terada C, Uno H, Nagata J, Masuda R, Kaji K, Saitoh T (2014) Temporal change in the spatial genetic structure of a sika deer population with an expanding distribution range over a 15-year period. Popul Ecol 56:311–325CrossRefGoogle Scholar
  78. Pearse DE, Crandall KA (2004) Beyond FST: analysis of population genetic data for conservation. Conserv Genetics 5:585–602CrossRefGoogle Scholar
  79. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  80. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  81. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  82. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225PubMedCrossRefGoogle Scholar
  83. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi:10.1016/j.tree.2007.07.002 PubMedCrossRefGoogle Scholar
  84. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  85. Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol 2(3):229–232CrossRefGoogle Scholar
  86. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  87. Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  88. Sanchéz-Fernandéz B, Soriguer R, Rico C (2008) Cross-species tests of 45 microsatellite loci isolated from different species of ungulates in the Iberian red deer (Cervus elaphus hispanicus) to generate a multiplex panel. Mol Ecol Resour 8:1378–1381PubMedCrossRefGoogle Scholar
  89. Senn HV (2009) Hybridisation between red deer (Cervus elaphus) and Japanese sika (C. nippon) on the Kintyre Peninsula, Scotland. Dissertation, University of EdinburghGoogle Scholar
  90. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792PubMedCrossRefGoogle Scholar
  91. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279PubMedCrossRefGoogle Scholar
  92. Takiguchi H, Tanaka K, Ono K, Hoshi A, Minami M, Yamauchi K, Takatsuki S (2012) Genetic variation and population structure of the Japanese Sika Deer (Cervus nippon) in the Tohoku District based on mitochondrial D-loop sequences. Zool Sci 29:433–436PubMedCrossRefGoogle Scholar
  93. Tamate HB, Tsuchiya T (1995) Mitochondrial DNA polymorphism in subspecies of the Japanese Sika deer, Cervus nippon. J Hered 86:211–215PubMedCrossRefGoogle Scholar
  94. Tamate HB, Tatsuzawa S, Suda K, Izawa M, Doi T, Sunagawa K, Miyahira F, Tado H (1998) Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. J Mammal 78:1396–1403CrossRefGoogle Scholar
  95. Tamate HB, Okada A, Minami M, Ohnishi N, Higuchi H, Takatsuki S (2000) Genetic variations revealed by microsatellite markers in a small population of the sika deer (Cervus nippon) on Kinkazan Island, Northern Japan. Zool Sci 17:47–53PubMedCrossRefGoogle Scholar
  96. Vaha JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72PubMedCrossRefGoogle Scholar
  97. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538CrossRefGoogle Scholar
  98. Vavruněk J, Wolf R (1977) Breeding of red deer in West-Bohemian region, vol 20. Textbook of the Scientific Forest Institute of VŠZ, Prague, pp 97–115 (In Czech) Google Scholar
  99. Vilá C, Sundqvist A-K, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc Biol Sci 270:91–97PubMedPubMedCentralCrossRefGoogle Scholar
  100. Weber DS, Stewart BS, Garza JC, Lehman N (2000) An empirical genetic assessment of the severity of the northern elephant seal population bottleneck. Curr Biol 10:1287–1290PubMedCrossRefGoogle Scholar
  101. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  102. Whitaker JO, Hamilton WJ (1998) Mammals of the Eastern United States. Cornell University Press, IthacaGoogle Scholar
  103. Whitehead GK (1993) Encyclopedia of deer. Swan Hill Press, ShrewsburyGoogle Scholar
  104. Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genetics 6:551–562. doi:10.1007/s10592-005-9009-5 CrossRefGoogle Scholar
  105. Wilson RL (2000) An investigation into the phylogeography of sika deer (Cervus nippon) using microsatellite markers. Master’s thesis, University of EdinburgGoogle Scholar
  106. Wittenberg R, Cock MJW (2001) Invasive alien species: a toolkit of best prevention and management practices. CAB International, WallingfordCrossRefGoogle Scholar
  107. Wolf R, Vavruněk J (1975–1976) Eastern sika Cervus nippon Temm in Western Bohemia. Textbook of the Scientific Forest Institute of VŠZ in Prague 18–19:185–199. (In Czech)Google Scholar
  108. Worley K, Strobeck C, Arthur S, Carey J, Schwantje H, Veitch A, Coltman DW (2004) Population genetic structure of North American thinhorn sheep (Ovis dalli). Mol Ecol 13:2545–2556PubMedCrossRefGoogle Scholar
  109. Yabe T, Takatsuki S (2009) Migratory and sedentary behavior patterns of sika deer in Honshu and Kyushu, Japan. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 273–283CrossRefGoogle Scholar
  110. Yamada M, Hosoi E, Tamate HB, Nagata L, Tatsuzawa S, Tado H, Ozawa S (2006) Distribution of two distinct lineages of sika deer (Cervus nippon) on Shikoku Island revealed by mitochondrial DNA analysis. Mammal Study 31:23–28CrossRefGoogle Scholar
  111. Yoshio M, Asada M, Ochiai K, Goka K, Murase K, Miyashita T, Tatsuta H (2008) Spatially heterogeneous distribution of mtDNA haplotypes in a sika deer (Cervus nippon) population on the Boso Peninsula, central Japan. Mammal Study 33:59–69CrossRefGoogle Scholar
  112. Yoshio M, Asada M, Ochiai K, Goka K, Miyashita T, Tatsuta H (2009) Evidence for cryptic genetic discontinuity in a recently expanded sika deer population on the Boso Peninsula, Central Japan. Zool Sci 26:48–53. doi:10.2108/zsj.26.48 PubMedCrossRefGoogle Scholar
  113. Yuasa T, Nagata J, Hamasaki S, Tsuruga H, Furubayashi K (2007) The impact of habitat fragmentation on genetic structure of Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial D-loop sequences. Ecol Res 22:97–106CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jarmila Krojerová-Prokešová
    • 1
  • Miroslava Barančeková
    • 1
  • Yukichika Kawata
    • 2
  • Tatsuo Oshida
    • 3
  • Hiromasa Igota
    • 4
  • Petr Koubek
    • 1
    • 5
  1. 1.Institute of Vertebrate Biology Academy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Faculty of EconomicsKindai UniversityHigashiosakaJapan
  3. 3.Laboratory of Wildlife BiologyObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  4. 4.Game Management Laboratory, Department of Environment and Symbiotic ScienceRakuno Gakuen UniversityEbetsuJapan
  5. 5.Department of Forest Protection and Game Management, Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePrague 6, SuchdolCzech Republic

Personalised recommendations