Biological Invasions

, Volume 19, Issue 5, pp 1597–1619 | Cite as

Signatures of invasion: using an integrative approach to infer the spread of melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae), across Southeast Asia and the West Pacific

  • Yuvarin Boontop
  • Mark K. Schutze
  • Anthony R. Clarke
  • Stephen L. Cameron
  • Matt N. Krosch
Original Paper


Invasion into new areas by already widespread pest organisms often occurs through non-obvious routes, with the origins of such invasions difficult to determine. Understanding population structure using multiple datatypes can help untangle past dispersal events and reveal putative contemporary invasion pathways. The tephritid fruit fly, Zeugodacus cucurbitae (Coquillett), is a serious pest of cucurbits and other commercial crops and is considered native to the Indo-Oriental region, but is invasive in both Africa and the Pacific. Here, we combine molecular (microsatellites and COI) and morphological (male genetalia length and wing shape geometric morphometrics) data within an integrative taxonomic framework to test hypotheses concerning levels of Z. cucurbitae population variation observed in Southeast Asia (native range, 10 sites, ~200 individuals) versus the West Pacific (invasive range, 4 sites, ~80 individuals), and whether single or multiple introductions of Z. cucurbitae have occurred into the West Pacific. We also use this case to explicitly test if using an integrative approach provides more information about hypothesized invasion pathways than either genetic or morphological approaches would do alone. All datasets support Z. cucurbitae as being more variable in Southeast Asia than the West Pacific, and within these regions populations appear to be structured geographically. In particular, mainland and Sundaic Southeast Asian locations formed separate clusters, and New Guinea and Solomon Islands were not closely related to Guam and Hawaii. Evidence supports a separate single origin for New Guinea from the Melanesian arc, the Solomon Islands from Malaysia/Singapore, and Guam from mainland Asia, but multiple introductions into Hawaii from mainland Asia. Taken together, we argue that there is great value in integrating evidence from multiple sources as it can provide finer resolution of population relationships than any single data source alone.


Fruit flies Dacinae Long-distance dispersal Population genetics Indo-Malay archipelago Integrative taxonomy 



YB was supported by a Royal Thai Government Scholarship. Research support for this study came from Consultancy Agreement 2012-SPSCPB-80655-DNABCPFF provided by the Australian Government Department of Agriculture, Fisheries and Forestry, through the support of Dr Ian Naumann. SLC was supported by the Australian Research Council (FT120100746). The data reported in this paper were obtained at the Central Analytical Research Facility operated by the Institute for Future Environments (QUT). Access to CARF is supported by generous funding from the Science and Engineering Faculty (QUT).The authors thank the Molecular Genetics Research Facility (QUT), Vincent Chand, and Dr. Litticia Bryant for laboratory assistance. We greatly acknowledge the following colleagues for assistance with field collections: Mr Am Phirum (Cambodia); Dr Suthana Ketmaro, Mrs Sirinee Poonchaisri, Miss Sunadda Chaovalit and Miss Chamaiporn Buamas (Thailand); Mr Francis Tsatsia (Solomon Islands); Mr He Liansheng and Ms Jenny Yap (Singapore); Dr Mark Ero (PNG); Mr Musa Mubah and Ms Suhana Yusof (Malaysia); Dr Pyone Pyone Kyi (Myanmar); Mr Rhodjz Orqui (Philippines); Dr Russell Campbell (Guam); Dr Todd Shelly (U.S.A.); Mr Yosef Rumbino (Indonesia); Dr Duong Minh Tu and Dr Dam Ngoc Han (Vietnam); and Dr Vijay Vijaysegaran (Australia).

Supplementary material

10530_2017_1382_MOESM1_ESM.docx (84 kb)
Supplementary material 1 (DOCX 83 kb)
10530_2017_1382_MOESM2_ESM.tif (650 kb)
Supplementary Figure 1 Scenarios of population relationships tested using DIYABC analysis. Populations were collapsed into six groups: mainland Southeast Asia (mSA: mainland Southeast Asia; M + S: Malaysia + Singapore; aSA: archipelagic Southeast Asia; NG: New Guinea; Sol: Solomon Islands; G + H: Guam + Hawaii) (TIFF 649 kb)
10530_2017_1382_MOESM3_ESM.tif (429 kb)
Supplementary Figure 2 Plots of scenario posterior probabilities under both the direct and logistic regression methods (TIFF 428 kb)


  1. Aketarawong N, Guglielmino CR, Karam N, Falchetto M, Manni M, Scolari F, Gomulski LM, Gasperi G, Malacrida AR (2014) The oriental fruit fly Bactrocera dorsalis s.s. in East Asia: disentangling the different forces promoting the invasion and shaping the genetic make-up of populations. Genetica 142:201–213CrossRefPubMedGoogle Scholar
  2. Allwood AJ, Drew RAI (1996) Management of fruit flies in the Pacific. In: ACIAR proceedings no. 76. ACIAR, Canberra, AustraliaGoogle Scholar
  3. Allwood AJ, Chinajariyawong A, Drew RAI, Hamacek EL, Hancock DL, Hengsawad C, Jinapin JC, Jirasurat M, Kong Krong C, Kritsaneepaiboon S, Leong CTS, Vijaysegaran S (1999) Host plant records for fruit flies (Diptera: Tephritidae) in Southeast Asia. Raffles Bull Zool 7:1–92Google Scholar
  4. Aytekin MA, Terzo M, Rasmont P, Çağatay N (2007) Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Ann Soc Entomol Fr 43:95–102Google Scholar
  5. Back EA, Pemberton CE (1917) The melon fly in Hawaii. USDA Bull 491:1–64Google Scholar
  6. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  7. Barr NB (2009) Pathway analysis of Ceratitis capitata (Diptera: Tephritidae) using mitochondrial DNA. J Econ Entomol 102:401–411CrossRefPubMedGoogle Scholar
  8. Barr NB, Ledezma LA, Leblanc L, San Jose M, Rubinoff D, Geib SM, Fujita B, Bartels DW, Garza D, Kerr P, Hauser M (2014) Genetic diversity of Bactrocera dorsalis (Diptera: Tephritidae) on the Hawaiian Islands: implications for an introduction pathway into California. J Econ Entomol 107:1946–1958CrossRefPubMedGoogle Scholar
  9. Bess HA, Van Den Bosch R, Haramoto FH (1961) Fruit fly parasites and their activities in Hawaii. Proc Hawaii Entomol Soc 17:367–378Google Scholar
  10. Bezzi M (1913) Indian Tephritids (fruit flies) in the collection of the Indian Museum, Calcutta. Mem Indian Mus 3:153–175Google Scholar
  11. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. New York, Cambridge University PressGoogle Scholar
  12. Boontop Y (2016) Natural variation and biogeography of the melon fruit fly, Zeugodacus cucurbitae (Diptera: Tephritidae), in Southeast-Asia and the West-Pacific. Ph.D. dissertation, Queensland University of TechnologyGoogle Scholar
  13. Bouyer J, Ravel S, Dujardin JP, De Meeüs T, Vial L, Thévenon S, Guerrini L, Sidibe I, Solano P (2007) Population structuring of Glossina palpalis gambiensis (Diptera: Glossinidae) according to landscape fragmentation in the Mouhoun river, Burkina Faso. J Med Entomol 44:788–795CrossRefPubMedGoogle Scholar
  14. Cáceres C, Segura DF, Vera MT, Wornoayporn V, Cladera JL, Teal P, Sapountzis P, Bourtzis K, Zacharopoulou A, Robinson A (2009) Incipient speciation revealed in Anastrepha fraterculus (Diptera; Tephritidae) by studies on mating compatibility, sex pheromones, hybridization, and cytology. Biol J Linn Soc 97:152–165CrossRefGoogle Scholar
  15. Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forest of Alberta: insights into introduction mechanisms. Mol Ecol 17:1189–1197CrossRefPubMedGoogle Scholar
  16. Clarke AR, Allwood A, Chinajariyawong A, Drew RAI, Hengsawad C, Jirasurat M, Krong CK, Kritsaneepaiboon S, Vijaysegaran S (2001) Seasonal abundance and host use patterns of seven Bactrocera Macquart species (Diptera: Tephritidae) in Thailand and Peninsular Malaysia. Raffles B Zool 49:207–220Google Scholar
  17. Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Ann Rev Entomol 50:293–319CrossRefGoogle Scholar
  18. Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189CrossRefPubMedGoogle Scholar
  19. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415CrossRefGoogle Scholar
  20. De Bruyn M, Nugroho E, Hossain MM, Wilson JC, Mather PB (2005) Phylogeographic evidence for the existence of an ancient biogeographic barrier: the Isthmus of Kra Seaway. Heredity 94:370–378CrossRefPubMedGoogle Scholar
  21. De Meyer M, Robertson MP, Peterson AT, Mansell MW (2008) Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J Biogeogr 35:270–281CrossRefGoogle Scholar
  22. De Meyer M, Delatte H, Ekesi S, Jordaens K, Kalinova B, Manrakan A, Mwatawala M, Steck G, Van Cann J, Vanickova L, Brizova R, Virgilio M (2015a) An integrative approach to unravel the Ceratitis FAR (Diptera, Tephritidae) cryptic species complex: a review. ZooKeys 540:405–427CrossRefGoogle Scholar
  23. De Meyer M, Delatte H, Mwatawala M, Quilici S, Vayssieres JF, Virgilio M (2015b) A review of the current knowledge on Zeugodacus cucurbitae (Coquillett) (Diptera, Tephritidae) in Africa, with a list of species included in Zeugodacus. ZooKeys 540:539–557CrossRefGoogle Scholar
  24. De Villiers M, Hattingh V, Kriticos DJ, Brunel S, Vayssières J-F, Sinzogan A, Billah MK, Mohamed SA, Mwatawala M, Abdelgader H, Salah FEE, De Meyer M (2016) The potential distribution of Bactrocera dorsalis: considering phenology and irrigation patterns. B Entomol Res 106:19–33CrossRefGoogle Scholar
  25. Delatte H, Virgilio M, Simiand C, Risterucci AM, De Meyer M, Quilici S (2010) Isolation and characterization of microsatellite markers from Bactrocera cucurbitae (Coquillett). Mol Ecol Resour 10:576–579CrossRefPubMedGoogle Scholar
  26. Dhillon MK, Singh R, Naresh JS, Sharma HC (2005) The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. J Insect Sci 5:40CrossRefPubMedPubMedCentralGoogle Scholar
  27. Drake AG, Klingenberg CP (2008) The pace of morphological change: historical transformation of skull shape in St. Bernard dogs. Proc R Soc Lond B Biol 275:71–76CrossRefGoogle Scholar
  28. Drew RAI, Hancock DL (2000) Phylogeny of the tribe Dacini (Dacinae) based on morphological, distributional, and biological data. In: Aluja M, Norrbom AL (eds) Fruit flies (Tephritidae): phylogeny and evolution of Behavior. CRC Press, New York, pp 491–504Google Scholar
  29. Drew RAI, Romig MC (2013) Tropical fruit flies (Tephritidae Dacinae) of South-East Asia: Indomalaya to North-West Australasia. CABI, WallingfordGoogle Scholar
  30. Duyck PF, David P, Quilici S (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol 29:511–520CrossRefGoogle Scholar
  31. Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  32. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefPubMedGoogle Scholar
  33. Eta CR (1985) Eradication of the melon fly from Shortland Islands, Western Province, Solomon Islands (special report). Solomon Islands Agricultural Quarantine Service, Annual Report. Ministry of Agriculture and Lands, Honiara, pp 14–23Google Scholar
  34. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  35. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolut Bioinform 1:47Google Scholar
  36. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  37. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  38. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  39. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  40. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedPubMedCentralGoogle Scholar
  41. Gilchrist AS, Crisafulli DCA (2006) Using variation in wing shape to distinguish between wild and mass-reared individuals of Queensland fruit fly, Bactrocera tryoni. Entomol Exp Appl 119:175–178CrossRefGoogle Scholar
  42. Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  43. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Lausanne University, Lausanne, Switzerland.
  44. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  45. Hu J, Zhang JL, Nardi F, Zhang RJ (2008) Population genetic structure of the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae), from China and Southeast Asia. Genetica 134:319–324CrossRefPubMedGoogle Scholar
  46. Iwaizumi R, Kaneda M, Iwahashi O (1997) Correlation of length of terminalia of males and females among nine species of Bactrocera (Diptera, Tephritidae) and differences among sympatric species of B. dorsalis complex. Ann Entomol Soc Am 90:664–666CrossRefGoogle Scholar
  47. Jackson CG, Vargas RI, Suda DY (2003) Populations of Bactrocera cucurbitae (Diptera: Tephritidae) and its parasitoid, Psyttalia fletcheri (Hymenoptera: Braconidae) in Coccinia grandis (Cucurbitaceae) or ivy gourd on the island of Hawaii. Proc Hawaii Entomol Soc 36:39–46Google Scholar
  48. Jacquard C, Virgilio M, David P, Quilici S, De Meyer M, Delatte H (2013) Population structure of the melon fly, Bactrocera cucurbitae, in Reunion Island. Biol Invasions 15:759–773CrossRefGoogle Scholar
  49. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  50. Jiang F, Li ZH, Deng YL, Wu JJ, Liu RS, Buahom N (2013) Rapid diagnosis of the economically important fruit fly, Bactrocera correcta (Diptera: Tephritidae) based on a species-specific barcoding cytochrome oxidase I marker. Bull Entomol Res 103:363–371CrossRefPubMedGoogle Scholar
  51. Jiang F, Jin Q, Liang L, Zhang AB, Li ZH (2014) Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp. Mol Ecol Resour 14:1114–1128CrossRefPubMedGoogle Scholar
  52. Johannesen J, Keyghobadi N, Schuler H, Stauffer C, Vogt H (2013) Invasion genetics of American cherry fruit fly in Europe and signals of hybridization with the European cherry fruit fly. Entomol Exp Appl 147:61–72CrossRefGoogle Scholar
  53. Khamis FM, Masiga DK, Mohamed SA, Salifu D, De Meyer M, Ekesi S (2012) Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding. PLoS ONE 7:e44862CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kitthawee S, Rungsri N (2011) Differentiation in wing shape in the Bactrocera tau (Walker) complex on a single fruit species in Thailand. Sci Asia 37:308–313CrossRefGoogle Scholar
  55. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357CrossRefPubMedGoogle Scholar
  56. Krosch MN, Schutze MK, Armstrong KF, Boontop Y, Boykin LM, Chapman TA, Englezou A, Cameron SL, Clarke AR (2013) Piecing together an integrative taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera dorsalis s.l. (Diptera: Tephritidae) find no evidence of multiple lineages in a proposed contact zone along the Thai/Malay Peninsula. Syst Entomol 38:2–13CrossRefGoogle Scholar
  57. Lecocq T, Dellicour S, Michez D, Dehon M, Dewulf A, De Meulemeester T, Brasero N, Valterova I, Rasplus J-Y, Rasmont P (2015) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool Scr 44:281–297CrossRefGoogle Scholar
  58. Levine JM (2008) Biological invasions. Curr Biol 18:R57–R60CrossRefPubMedGoogle Scholar
  59. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  60. Malacrida AR, Gomulski LM, Bonizzoni M, Bertin S, Gasperi G, Guglielmino CR (2007) Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131:1–9CrossRefPubMedGoogle Scholar
  61. Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231CrossRefPubMedGoogle Scholar
  62. Meixner MD, McPheron BA, Silva JG, Gasparich GE, Sheppard WS (2002) The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability. Mol Ecol 11:891–899CrossRefPubMedGoogle Scholar
  63. Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol Ecol 14:2729–2738CrossRefPubMedGoogle Scholar
  65. Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517CrossRefGoogle Scholar
  66. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D. dissertation, University of DublinGoogle Scholar
  67. Pimentel D (2011) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC Press, New YorkCrossRefGoogle Scholar
  68. Prabhakar CS, Mehta PK, Sood P, Singh SK, Sharma P, Sharma PN (2012) Population genetic structure of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) based on mitochondrial cytochrome oxidase (COI) gene sequences. Genetica 140:83–91CrossRefPubMedGoogle Scholar
  69. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  70. Puillandre N, Dupas S, Dangles O, Zeddam JL, Capdevielle-Dulac C, Barbin K, Torres-Leguizamon M, Silvain JF (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333CrossRefGoogle Scholar
  71. Putulan D, Sar S, Drew RA, Raghu S, Clarke AR (2004) Fruit and vegetable movement on domestic flights in Papua New Guinea and the risk of spreading pest fruit-flies (Diptera: Tephritidae). Int J Pest Manag 50:17–22CrossRefGoogle Scholar
  72. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  73. Roderick GK, Howarth FG (1997) Invasion genetics: natural colonizations, exotic pests, and classical biological control. In: Miyazaki M, Andow D (eds) Biological invasions of ecosystems by pests and beneficial organisms. National Institute of Agro-Environmental Sciences, Tsukuba, pp 349–357Google Scholar
  74. Rohlf FJ (1999) Shape statistics: procrustes superimpositions and tangent spaces. J Classif 16:197–223CrossRefGoogle Scholar
  75. Rohlf FJ (2013) tpsDig, digitize landmarks and outlines. Department of Ecology and Evolution, State University of New York at Stony Brook, NY, USA.
  76. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  77. Scheffer SJ, Grissell EE (2003) Tracing the geographical origin of Megastigmus transvaalensis (Hymenoptera: Torymidae): an African wasp feeding on a South American plant in North America. Mol Ecol 12:415–421CrossRefPubMedGoogle Scholar
  78. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Ann Rev Entomol 55:421–438CrossRefGoogle Scholar
  79. Schrag S, Wiener P (1995) Emerging infectious disease: what are the relative roles of ecology and evolution? Trends Ecol Evol 10:319–324CrossRefPubMedGoogle Scholar
  80. Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomič A, Cameron SL, Hailstones D, Clarke AR (2012a) Population structure of Bactrocera dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae) in Southeast Asia: evidence for a single species hypothesis using mitochondrial DNA and wing-shape data. BMC Evol Biol 12:130CrossRefPubMedPubMedCentralGoogle Scholar
  81. Schutze MK, Jessup A, Clarke AR (2012b) Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bull Entomol Res 102:103–111CrossRefPubMedGoogle Scholar
  82. Schutze MK, Mahmood K, Pavasovic A, Bo W, Newman J, Clarke AR, Krosch MN, Cameron SL (2015a) One and the same: integrative taxonomic evidence that Bactrocera invadens (Diptera: Tephritidae) is the same species as the Oriental fruit fly Bactrocera dorsalis. Syst Entomol 40:472–486CrossRefGoogle Scholar
  83. Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA, Barr N, Bo W, Bourtzis K, Boykin LM, Cáceres C, Cameron SL, Chapman TA, Chinvinijkul S, Chomič A, De Meyer M, Drosopoulou E, Englezou A, Ekesi S, Gariou-Papalexiou A, Geib SM, Hailstones D, Hasanuzzaman M, Haymer D, Hee AKW, Hendrichs J, Jessup A, Ji Q, Khamis FM, Krosch MN, Leblanc L, Mahmood K, Malacrida AR, Mavragani-Tsipidou P, Mwatawala M, Nishida R, Ono H, Reyes J, Rubinoff D, San Jose M, Shelly TE, Srikachar S, Tan KH, Thanaphum S, Ul-Haq I, Vijaysegaran S, Wee SL, Yesmin F, Zacharopoulou A, Clarke AR (2015b) Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Syst Entomol 40:456–471CrossRefGoogle Scholar
  84. Severin HHP, Severin MA, Hartung WJ (1914) The ravages, life history, weights of stages, natural enemies, and methods of control of the melon fly (Dacus cucurbitae). Ann Entomol Soc Am 7:177–207CrossRefGoogle Scholar
  85. Sh W, Kerdelhué C, Ye H (2014) Genetic structure and colonization history of the fruit fly Bactrocera tau (Diptera: Tephritidae) in China and Southeast Asia. J Econ Entomol 107:1256–1265CrossRefGoogle Scholar
  86. Sved JA, Yu H, Dominiak B, Gilchrist AS (2003) Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test. Genetics 163:823–831PubMedPubMedCentralGoogle Scholar
  87. Tajima F (1993) Measurement of DNA polymorphism. In: Takahata N, Clark AG (eds) Mechanisms of molecular evolution. Introduction to molecular paleopopulation biology. Sinauer Associates, Sunderland, pp 37–59Google Scholar
  88. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  89. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2001) Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol Ecol 10:2151–2161CrossRefPubMedGoogle Scholar
  90. Vargas RI, Stark JD, Nishida T (1989) Abundance, distribution, and dispersion indices of the oriental fruit fly and melon fly (Diptera: Tephritidae) on Kauai, Hawaiian Islands. J Econ Entomol 82:1609–1615CrossRefGoogle Scholar
  91. Vargas RI, Long J, Miller NW, Delate K, Jackson CG, Uchida GK, Bautista RC, Harris EJ (2004) Releases of Psyttalia fletcheri (Hymenoptera: Braconidae) and sterile flies to suppress melon fly (Diptera: Tephritidae) in Hawaii. J Econ Entomol 97:1531–1539CrossRefPubMedGoogle Scholar
  92. Vargas RI, Piñero JC, Leblanc L (2015) An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6:297–318CrossRefPubMedPubMedCentralGoogle Scholar
  93. Virgilio M, Delatte H, Backeljau T, De Meyer M (2010) Macrogeographic population structuring in the cosmopolitan agricultural pest Bactrocera cucurbitae (Diptera: Tephritidae). Mol Ecol 19:2713–2724CrossRefPubMedGoogle Scholar
  94. Virgilio M, Jordaens K, Breman FC, Backeljau T, De Meyer M (2012) Identifying insects with incomplete DNA barcode libraries, African Fruit flies (Diptera: Tephritidae) as a test case. PLoS ONE 7:e31581CrossRefPubMedPubMedCentralGoogle Scholar
  95. Waterhouse DF (1993) The major arthropod pests and weeds of agriculture in Southeast Asia. ACIAR, CanberraGoogle Scholar
  96. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  97. White IM, Elson-Harris MM (1992) Fruit Flies of Economic Significance: their identification and bionomics. ACIAR/CAB International, WallingfordGoogle Scholar
  98. Wilson JJ (2012) DNA barcodes for insects. Methods Mol Biol 858:17–46CrossRefPubMedGoogle Scholar
  99. Woodruff D (2003) Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay Peninsula. J Biogeogr 30:551–567CrossRefGoogle Scholar
  100. Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941CrossRefGoogle Scholar
  101. Wu Y, Li ZH, Wu JJ (2009) Polymorphic microsatellite markers in the Melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Mol Ecol Resour 9:1404–1406CrossRefPubMedGoogle Scholar
  102. Wu Y, Li Y, Ruiz-Arce R, McPheron B, Wu J, Li Z (2011) Microsatellite markers reveal population structure and low gene flow among collections of Bactrocera cucurbitae (Diptera: Tephritidae) in Asia. J Econ Entomol 104:1065–1074CrossRefPubMedGoogle Scholar
  103. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, SydneyGoogle Scholar
  104. Zhang B, Edwards OR, Kang L, Fuller SJ (2012) Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? Mol Ecol 21:2130–2144CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Yuvarin Boontop
    • 1
    • 2
  • Mark K. Schutze
    • 1
    • 3
  • Anthony R. Clarke
    • 1
  • Stephen L. Cameron
    • 1
    • 4
  • Matt N. Krosch
    • 1
  1. 1.Queensland University of Technology (QUT)BrisbaneAustralia
  2. 2.Entomology and Zoology Group, Plant Protection Research and Development OfficeDepartment of AgricultureBangkokThailand
  3. 3.Queensland Primary Industries Insect Collection (QDPC)Department of Agriculture & FisheriesBrisbaneAustralia
  4. 4.Department of EntomologyPurdue UniversityWest LafayetteUSA

Personalised recommendations