Advertisement

Biological Invasions

, Volume 19, Issue 5, pp 1517–1532 | Cite as

Success factors and future prospects of Ponto–Caspian peracarid (Crustacea: Malacostraca) invasions: Is ‘the worst over’?

  • Péter Borza
  • Thomas Huber
  • Patrick Leitner
  • Nadine Remund
  • Wolfram Graf
Original Paper

Abstract

Ponto–Caspian peracarids (amphipods, isopods, mysids and cumaceans) represent one of the most successful groups of aquatic invaders comprising several high-impact species, such as Chelicorophium curvispinum, Dikerogammarus villosus, or Hemimysis anomala. In the present study we made the first attempt to compare biological traits and the environmental preferences of invasive and non-invasive members of the group based on both literature and field data (Joint Danube Survey 3, 2013) with the goal of identifying factors linked to invasion success and drawing conclusions on future invasion risks. Both datasets indicated substrate preference as an important factor in spontaneous range expansion; all invasive species are lithophilous, whereas the majority of non-invasives are psammo-pelophilous. The remaining seven presently non-invasive lithophilous species deserve special attention when considering potential future invaders; however, due to their rarity and possible negative interactions with earlier colonists we consider the probability of their expansion in the foreseeable future as low. Their potential expansion could most likely be of minor consequence anyway, since no considerable functional novelty can be attributed to them in addition to species already present. In this limited context (regarding habitats dominated by hard substrates and not considering the potential further spread of already invasive species) it might be justified to conclude that ‘the worst is over’. Nevertheless, impending navigation development projects both in the Danube–Main–Rhine and Dnieper–Pripyat–Bug–Vistula systems might favour the future spread of non-lithophilous species, which might imply a new invasion wave of Ponto–Caspian peracarids.

Keywords

Amphipoda Colonization rate Cumacea Isopoda Mysida Substrate preference 

Notes

Acknowledgements

Joint Danube Survey 3 was organized by the International Commission for the Protection of the Danube River (ICPDR). We would like to thank everyone involved in the organization, field work, and evaluation of the survey for their effort. This work was supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded by the European Union under the 7th Framework Programme, grant Agreement No: 603378. Péter Borza was supported by the Scholarship of the Scholarship Foundation of the Republic of Austria for Post-docs from October 2013 until March 2014 (funding organization: OeAD-GmbH on behalf of and financed by the Scholarship Foundation of the Republic of Austria). We thank Karl J. Wittmann for data on D. pengoi distribution, Michał Grabowski for remarks on amphipod taxonomy, and Ferenc Jordán, Dénes Schmera and two anonymous referees for useful comments on the manuscript.

References

  1. Anonymous (2016a) Danube region strategy projects: waterway inftrastructure. http://www.danube-navigation.eu/projects-ideas. Accessed 28 Nov 2016
  2. Anonymous (2016b) Commission on the development of the E-40 waterway on the Dnieper–Vistula section. http://e40restoration.eu/en. Accessed 28 Nov 2016
  3. Arbaciauskas K (2002) Ponto–Caspian amphipods and mysids in the inland waters of Lithuania: history of introduction, current distribution and relations with native malacostracans. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 104–115CrossRefGoogle Scholar
  4. Băcescu M (1951) Crustacea: Cumacea. Editura Academiei Republicii Populare Romîne, BucureştiGoogle Scholar
  5. Băcescu M (1954) Crustacea: Mysidacea. Editura Academiei Republicii Populare Romîne, BucureştiGoogle Scholar
  6. Bernerth H, Tobias W, Stein S (2005) Faunenwandel im Main zwischen 1997 und 2002 am Beispiel des Makrozoobenthos. Faunistisch-ökologische Untersuchungen des Forschungsinstitutes Senckenberg im hessischen Main. Hessisches Landesamt für Umwelt und Geologie, Wiesbaden, pp 15–87Google Scholar
  7. Bij de Vaate A, Jażdżewski K, Ketelaars HAM et al (2002) Geographical patterns in range extension of Ponto–Caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174. doi: 10.1139/f02-098 CrossRefGoogle Scholar
  8. Blanchet FG, Legendre P, Borcard D (2008a) Forward selection of explanatory variables. Ecology 89:2623–2632. doi: 10.1890/07-0986.1 CrossRefPubMedGoogle Scholar
  9. Blanchet FG, Legendre P, Borcard D (2008b) Modelling directional spatial processes in ecological data. Ecol Model 215:325–336. doi: 10.1016/j.ecolmodel.2008.04.001 CrossRefGoogle Scholar
  10. Bondar C (1983) Zum Eindringen des Wassers des Schwarzen Meeres in die Donau-Arme. Hidrobiol Bucur 17:217Google Scholar
  11. Borcard D, Legendre P (2012) Is the mantel correlogram powerful enough to be useful in ecologicalanalysis? A simulation study. Ecology 93:1473–1481. doi: 10.1890/11-1737.1 CrossRefPubMedGoogle Scholar
  12. Borza P (2011) Revision of invasion history, distributional patterns, and new records of Corophiidae (Crustacea: Amphipoda) in Hungary. Acta Zool Acad Sci Hung 57:75–84Google Scholar
  13. Borza P (2014) Life history of invasive Ponto–Caspian mysids (Crustacea: Mysida): a comparative study. Limnologica 44:9–17. doi: 10.1016/j.limno.2013.06.001 CrossRefGoogle Scholar
  14. Borza P, Boda P (2013) Range expansion of Ponto–Caspian mysids (Mysida, Mysidae) in the River Tisza: first record of Paramysis lacustris (Czerniavsky, 1882) for Hungary. Crustaceana 86:1316–1327. doi: 10.1163/15685403-00003229 CrossRefGoogle Scholar
  15. Borza P, Csányi B, Huber T et al (2015) Longitudinal distributional patterns of Peracarida (Crustacea, Malacostraca) in the River Danube. Fundam Appl Limnol 187:113–126. doi: 10.1127/fal/2015/0769 CrossRefGoogle Scholar
  16. Cărăuşu S, Dobreanu E, Manolache C (1955) Amphipoda forme salmastre şi de apă dulce [Freshwater and brackish water Amphipoda]. Editura Academiei Republicii Populare Romîne, BucureştiGoogle Scholar
  17. Cristescu ME, Hebert PD (2005) The“Crustacean Seas” an evolutionary perspective on the Ponto Caspian peracarids. Can J Fish Aquat Sci 62:505–517. doi: 10.1139/f04-210 CrossRefGoogle Scholar
  18. Dediu II (1966) Répartition et caractéristique écologique des Mysides des bassins des rivièrs Dniestr et Pruth. Rev Roum Biol Zool 11:233–239Google Scholar
  19. Dediu II (1980) Amphipody presnykh i solonovatykh vod Yugo-Zapada SSSR [Amphipods of fresh and brackish waters of the South-West of USSR]. Shtiintsa, KishinevGoogle Scholar
  20. Devin S, Beisel J-N (2007) Biological and ecological characteristics of invasive species: a gammarid study. Biol Invasions 9:13–24. doi: 10.1007/s10530-006-9001-0 CrossRefGoogle Scholar
  21. Dick JT, Platvoet D, Kelly DW (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Can J Fish Aquat Sci 59:1078–1084. doi: 10.1139/f02-074 CrossRefGoogle Scholar
  22. Dudich E (1927) Új rákfajok Magyarország faunájában—Neue Krebstiere in der Fauna Ungarns. Arch Balatonicum 1:343–387Google Scholar
  23. Dudich E (1930) A Jaera Nordmanni Rathke, egy új víziászka a magyar faunában [Jaera Nordmanni Rathke, a new aquatic isopod in the Hungarian fauna]. Állattani Közlemények 27:120Google Scholar
  24. Filinova EI, Malinina YA, Shlyakhtin GV (2008) Bioinvasions in macrozoobenthos of the Volgograd Reservoir. Russ J Ecol 39:193–197. doi: 10.1134/S1067413608030077 CrossRefGoogle Scholar
  25. Gallardo B, Aldridge DC (2015) Is Great Britain heading for a Ponto–Caspian invasional meltdown? J Appl Ecol 52:41–49. doi: 10.1111/1365-2664.12348 CrossRefGoogle Scholar
  26. Grabowski M, Bacela K, Konopacka A (2007a) How to be an invasive gammarid (Amphipoda: Gammaroidea)—comparison of life history traits. Hydrobiologia 590:75–84. doi: 10.1007/s10750-007-0759-6 CrossRefGoogle Scholar
  27. Grabowski M, Jażdżewski K, Konopacka A (2007b) Alien Crustacea in polish waters—Amphipoda. Aquat Invasions 2:25–38. doi: 10.3391/ai.2007.2.1.3 CrossRefGoogle Scholar
  28. Grabowski M, Rewicz T, Bacela-Spychalska K et al (2012) Cryptic invasion of Baltic lowlands by freshwater amphipod of Pontic origin. Aquat Invasions 7:337–346. doi: 10.3391/ai.2012.7.3.005 CrossRefGoogle Scholar
  29. Grigorovich IA, MacIsaac HJ, Shadrin NV, Mills EL (2002) Patterns and mechanisms of aquatic invertebrate introductions in the Ponto–Caspian region. Can J Fish Aquat Sci 59:1189–1208. doi: 10.1139/f02-088 CrossRefGoogle Scholar
  30. Gruner HE (1965) Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und ihrer Lebensweise, Teil 51. Krebstiere oder Crustacea, V. Isopoda, 1. Lieferung. Fischer Verlag, JenaGoogle Scholar
  31. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi: 10.1007/s10530-007-9146-5 CrossRefGoogle Scholar
  32. Heger T, Trepl L (2003) Predicting Biological Invasions. Biol Invasions 5:313–321. doi: 10.1023/B:BINV.0000005568.44154.12 CrossRefGoogle Scholar
  33. Hering D, Moog O, Sandin L, Verdonschot PF (2004) Overview and application of the AQEM assessmentsystem. Hydrobiologia 516:1–20. doi: 10.1023/B:HYDR.0000025255.70009.a5 CrossRefGoogle Scholar
  34. Herkül K, Kotta J, Püss T, Kotta I (2009) Crustacean invasions in the Estonian coastal sea. Est J Ecol 58:313–323. doi: 10.3176/eco.2009.4.06 CrossRefGoogle Scholar
  35. Hothorn T, Bühlmann P, Dudoit S et al (2006) Survival ensembles. Biostatistics 7:355–373. doi: 10.1093/biostatistics/kxj011 CrossRefPubMedGoogle Scholar
  36. Hou Z, Sket B (2016) A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zool J Linn Soc 176:323–348. doi: 10.1111/zoj.12318 CrossRefGoogle Scholar
  37. Jermacz Ł, Dzierżyńska A, Kakareko T et al (2015a) The art of choice: predation risk changes interspecific competition between freshwater amphipods. Behav Ecol. doi: 10.1093/beheco/arv009 Google Scholar
  38. Jermacz Ł, Dzierżyńska A, Poznańska M, Kobak J (2015b) Experimental evaluation of preferences of an invasive Ponto–Caspian gammarid Pontogammarus robustoides (Amphipoda, Gammaroidea) for mineral and plant substrata. Hydrobiologia 746:209–221. doi: 10.1007/s10750-014-1963-9 CrossRefGoogle Scholar
  39. Karatayev AY, Mastitsky SE, Burlakova LE, Olenin S (2008) Past, current, and future of the central European corridor for aquatic invasions in Belarus. Biol Invasions 10:215–232. doi: 10.1007/s10530-007-9124-y CrossRefGoogle Scholar
  40. Ketelaars HA, Lambregts-van de Clundert FE, Carpentier CJ et al (1999) Ecological effects of the mass occurrence of the Ponto–Caspian invader, Hemimysis anomala GO Sars, 1907 (Crustacea: Mysidacea), in a freshwater storage reservoir in the Netherlands, with notes on its autecology and new records. Hydrobiologia 394:233–248. doi: 10.1023/A:1003619631920 CrossRefGoogle Scholar
  41. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi: 10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  42. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236. doi: 10.1126/science.1075753 CrossRefPubMedGoogle Scholar
  43. Komarova TI (1991) Fauna Ukrainy. T. 26. Mizidy (Mysidacea). Naukova Dumka, KievGoogle Scholar
  44. Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl 21:203–213. doi: 10.1890/09-1639.1 CrossRefPubMedGoogle Scholar
  45. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi: 10.1007/s004420100716 CrossRefGoogle Scholar
  46. Lowry JK, Myers AA (2013) A Phylogeny and Classification of the Senticaudata subord. nov. Crustacea: Amphipoda). Zootaxa 3610:1–80. doi: 10.11646/zootaxa.3610.1.1 CrossRefPubMedGoogle Scholar
  47. Lyashenko AV, Zorina-Sakharova YY, Makovskiy VV, Sanzhak YO (2012) Modern state of the Ponto–Caspian Complex of the macrofauna of invertebrates in the Lower Reaches of the Danube River within the territory of Ukraine. Hydrobiol J 48:18–37. doi: 10.1615/HydrobJ.v48.i4.20 CrossRefGoogle Scholar
  48. Mastitsky SE, Makarevich OA (2007) Distribution and abundance of Ponto–Caspian amphipods in the Belarusian section of the Dnieper River. Aquat Invasions 2:39–44. doi: 10.3391/ai.2007.2.1.4 CrossRefGoogle Scholar
  49. Nesemann H, Pöckl M, Wittmann KJ (1995) Distribution of epigean Malacostraca in the middle and upper Danube (Hungary, Austria, Germany). Misc Zool Hung 10:49–68Google Scholar
  50. Nosek JN, Oertel N (1980) Zoologische Untersuchungen an Aufwüchsen in der Donau zwischen Rajka und Budapest. Ann Univ Sci Budapestinensis Rolando Eotvos Nomin Sect Biol 22–23:187–204Google Scholar
  51. Oksanen J, Blanchet FG, Kindt R et al (2016) Vegan: community ecology package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan
  52. Pligin YV, Matchinskaya SF, Zheleznyak NI, Linchuk MI (2014) Long-term distribution of alien species of macroinvertebrates in the ecosystems of the Dnieper Reservoirs. Hydrobiol J 50:3–17. doi: 10.1615/HydrobJ.v50.i2.10 CrossRefGoogle Scholar
  53. Popescu-Marinescu V, Năstăsescu M (2005) Amphipods (Gammaridae and Corophiidae) from iron gates I and II Dam lakes–Danube (Romania), concerning especially 2002 situation. Trav Muséum Natl D’Histoire Nat Grigore Antipa 48:501–521Google Scholar
  54. Pothoven SA, Grigorovich IA, Fahnenstiel GL, Balcer MD (2007) Introduction of the Ponto–Caspian bloody-red mysid Hemimysis anomala into the Lake Michigan basin. J Gt Lakes Res 33:285–292. http://dx.doi.org/10.3394/0380-1330(2007)33[285:IOTPBM]2.0.CO;2 CrossRefGoogle Scholar
  55. Prunescu-Arion E, Elian L (1965) Beitrag zum Studium der Fauna und der Ökologie der Gammariden im rumänischen Abschnitt der Donau. Veröff Arbeitsgemeinschaft Donauforsch 2:65–79Google Scholar
  56. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  57. Rachalewski M, Konopacka A, Grabowski M, Bacela-Spychalska K (2013) Echinogammarus trichiatus (Martynov, 1932): a new Ponto–Caspian amphipod invader in Poland with remarks on other alien amphipods from the Oder River. Crustaceana 86:1224–1233. doi: 10.1163/15685403-00003228 CrossRefGoogle Scholar
  58. Reinhold M, Tittizer T (1999) Verschleppung von Makrozoen durch Kühlwasserfilter eines Schiffes. Wasser Boden 51:61–66Google Scholar
  59. Ricciardi A, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by Ponto–Caspian species. Trends Ecol Evol 15:62–65. doi: 10.1016/S0169-5347(99)01745-0 CrossRefPubMedGoogle Scholar
  60. Ricciardi A, Avlijas S, Marty J (2012) Forecasting the ecological impacts of the Hemimysis anomala invasion in North America: lessons from other freshwater mysid introductions. J Gt Lakes Res 38:7–13. doi: 10.1016/j.jglr.2011.06.007 CrossRefGoogle Scholar
  61. Sebestyén O (1934) A vándorkagyló (Dreissensia polymorpha Pall.) és a szövőbolharák (Corophium curvispinum G. O. Sars forma devium Wundsch) megjelenése és rohamos térfoglalása a Balatonban [Appearance and rapid increase of Dreissensia polymorpha Pall. and Corophium curvispinum G. O. Sars forma devium Wundsch in Lake Balaton]. Magy Biológiai Kutint Munkái 7:190–204Google Scholar
  62. Semenchenko V, Vezhnovetz V (2008) Two new invasive Ponto–Caspian amphipods reached the Pripyat River, Belarus. Aquat Invasions 3:445–447. doi: 10.3391/ai.2008.3.4.14 CrossRefGoogle Scholar
  63. Semenchenko VP, Son MO, Novitsky RA et al (2015) Alien macroinvertebrates and fish in the Dnieper River basin. Russ J Biol Invasions 6:51–64. doi: 10.1134/S2075111715010063 CrossRefGoogle Scholar
  64. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. doi: 10.1146/annurev.ecolsys.110308.120304 CrossRefGoogle Scholar
  65. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8:25. doi: 10.1186/1471-2105-8-25 CrossRefGoogle Scholar
  66. Strobl C, Boulesteix A-L, Kneib T et al (2008) Conditional variable importance for random forests. BMC Bioinform 9:307. doi: 10.1186/1471-2105-9-307 CrossRefGoogle Scholar
  67. Unger E (1918) A Corophium devium előfordulása a Dunában [Occurrence of Corophium devium in the Danube]. Állattani Közlemények 17:148–149Google Scholar
  68. Van den Brink FWB, Van der Velde G, Bij de Vaate A (1993) Ecological aspects, explosive range extension and impact of a mass invader, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the Lower Rhine (The Netherlands). Oecologia 93:224–232. doi: 10.1007/BF00317675 CrossRefPubMedGoogle Scholar
  69. Van Kleunen M, Dawson W, Schlaepfer D et al (2010a) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13:947–958. doi: 10.1111/j.1461-0248.2010.01503.x PubMedGoogle Scholar
  70. Van Kleunen M, Weber E, Fischer M (2010b) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. doi: 10.1111/j.1461-0248.2009.01418.x CrossRefPubMedGoogle Scholar
  71. Vasilenko S, Jaume D (2015) Check-list for Caspian Sea Cumaceans. http://www.zin.ru/projects/caspdiv/caspian_cumaceans.html. Accessed 08 Apr 2015
  72. Weinzierl A, Seitz G, Thannemann R (1997) Echinogammarus trichiatus (Amphipoda) und Atyaephyra desmaresti (Decapoda) in der bayerischen Donau. Lauterbornia 31:31–32Google Scholar
  73. Williamson M (1999) Invasions. Ecography 22:5–12. doi: 10.1111/j.1600-0587.1999.tb00449.x CrossRefGoogle Scholar
  74. Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170. doi: 10.1016/0006-3207(96)00025-0 CrossRefGoogle Scholar
  75. Wittmann KJ (2002) Weiteres Vordringen pontokaspischer Mysidacea (Crustacea) in die mittlere und obere Donau: Erstnachweise von Katamysis warpachowskyi für Ungarn, die Slowakei und Österreich mit Notizen zur Biologie und zum ökologischen Gefährdungspotential. Lauterbornia 44:49–63Google Scholar
  76. Wittmann KJ, Theiss J, Banning M (1999) Die Drift von Mysidacea und Decapoda und ihre Bedeutung für die Ausbreitung von Neozoen im Main-Donau-System. Lauterbornia 35:53–66Google Scholar
  77. Woynárovich E (1954) Vorkommen der Limnomysis benedeni Czern. im ungarischen Donauabschnitt. Acta Zool Acad Sci Hung 1:177–185Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Danube Research InstituteMTA Centre for Ecological ResearchBudapestHungary
  2. 2.Working Group on Benthic Ecology and Ecological Status Assessment, Department of Water, Atmosphere and Environment, Institute for Hydrobiology and Water ManagementBOKU - University of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.Info Fauna – CSCFNeuchâtelSwitzerland

Personalised recommendations