Biological Invasions

, Volume 19, Issue 4, pp 1081–1096 | Cite as

Global networks for invasion science: benefits, challenges and guidelines

  • Jasmin G. Packer
  • Laura A. Meyerson
  • David M. Richardson
  • Giuseppe Brundu
  • Warwick J. Allen
  • Ganesh P. Bhattarai
  • Hans Brix
  • Susan Canavan
  • Stefano Castiglione
  • Angela Cicatelli
  • Jan Čuda
  • James T. Cronin
  • Franziska Eller
  • Francesco Guarino
  • Wei-Hua Guo
  • Wen-Yong Guo
  • Xiao Guo
  • José L. Hierro
  • Carla Lambertini
  • Jian Liu
  • Vanessa Lozano
  • Thomas J. Mozdzer
  • Hana Skálová
  • Diego Villarreal
  • Ren-Qing Wang
  • Petr Pyšek
Perspectives and paradigms

Abstract

Much has been done to address the challenges of biological invasions, but fundamental questions (e.g., which species invade? Which habitats are invaded? How can invasions be effectively managed?) still need to be answered before the spread and impact of alien taxa can be effectively managed. Questions on the role of biogeography (e.g., how does biogeography influence ecosystem susceptibility, resistance and resilience against invasion?) have the greatest potential to address this goal by increasing our capacity to understand and accurately predict invasions at local, continental and global scales. This paper proposes a framework for the development of ‘Global Networks for Invasion Science’ to help generate approaches to address these critical and fundamentally biogeographic questions. We define global networks on the basis of their focus on research questions at the global scale, collection of primary data, use of standardized protocols and metrics, and commitment to long-term global data. Global networks are critical for the future of invasion science because of their potential to extend beyond the capacity of individual partners to identify global priorities for research agendas and coordinate data collection over space and time, assess risks and emerging trends, understand the complex influences of biogeography on mechanisms of invasion, predict the future of invasion dynamics, and use these new insights to improve the efficiency and effectiveness of evidence-based management techniques. While the pace and scale of global change continues to escalate, strategic and collaborative global networks offer a powerful approach to inform responses to the threats posed by biological invasions.

Keywords

Biogeographic Biological invasions Collaboration Global change Global research network Multitrophic Transdisciplinary 

Notes

Acknowledgements

We gratefully acknowledge the generosity of the University of Sassari, Italy, in hosting the PhragNet 2016 planning meetings and creating the space that facilitated this manuscript. DMR and SC acknowledge support from the DST-NRF Centre of Excellence for Invasion Biology and the Working for Water Programme through their collaborative research project on ‘Integrated management of invasive alien species in South Africa’ and the National Research Foundation of South Africa (Grant 85417 to DMR). SC’s work was supported by the South African National Department of Environment Affairs through its funding of the South African National Biodiversity Institute Invasive Species Programme. HB, CL and FE were supported by the Danish Council for Independent Research | Natural Sciences (Project DFF-4002-00333). JTC, WJA and GPB were supported by NSF grant DEB 1050084 to JTC. LAM was supported by NSF DEB 1049914 to LAM and by the University of Rhode Island, College of Environment and Life Sciences. PP, JC, WYG and HS were supported by long-term research development project RVO 67985939 (The Czech Academy of Sciences), and Project No. 14-15414S (Czech Science Foundation). PP acknowledges support by Praemium Academiae award from The Czech Academy of Sciences. JGP warmly thanks the Institute of Integrative Biology, ETH Zürich for welcoming hospitality and the Environment Institute and Faculty of Sciences, The University of Adelaide for support from Travel Grant 13116630.

Supplementary material

10530_2016_1302_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)

References

  1. Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86:2979–2989. doi:10.1890/05-0219 CrossRefGoogle Scholar
  2. Ahern J (2013) Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design. Landscape Ecol 28:1203–1212. doi:10.1007/s10980-012-9799-z CrossRefGoogle Scholar
  3. Avolio ML, Beaulieu JM, Smith MD (2013) Genetic diversity of a dominant C-4 grass is altered with increased precipitation variability. Oecologia 171:571–581. doi:10.1007/s00442-012-2427-4 CrossRefPubMedGoogle Scholar
  4. Barney JN, Tekiela DR, Barrios-Garcia MN, Dimarco RD, Hufbauer RA, Leipzig-Scott P, Nuñez MA, Pauchard A, Pyšek P, Vítková M, Maxwell BD (2015) Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants. Ecol Evol 5:2878–2889. doi:10.1002/ece3.1551 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40CrossRefGoogle Scholar
  6. Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl 2:187–199. doi:10.1111/j.1752-4571.2008.00053.x CrossRefPubMedGoogle Scholar
  7. Colautti RI, Franks SJ, Hufbauer RA, Kotanen P, Torchin M, Byers JE, Pyšek P, Bossdorf O (2014a) The Global Garlic Mustard Field Survey (GGMFS): challenges and opportunities of a unique, large-scale collaboration for invasion biology. NeoBiota 21:29–47. doi:10.3897/neobiota.21.5242 CrossRefGoogle Scholar
  8. Colautti RI, Parker JD, Cadotte MW, Pyšek P, Brown CS, Sax DF, Richardson DM (2014b) Quantifying the invasiveness of species. NeoBiota 21:7–27. doi:10.3897/neobiota.21.5310 CrossRefGoogle Scholar
  9. Cronin JT, Bhattarai GP, Allen WJ, Meyerson LA (2015) Biogeography of a plant invasion: plant–herbivore interactions. Ecology 96:1115–1127. doi:10.1890/14-1091.1 CrossRefPubMedGoogle Scholar
  10. Daehler CD, van Kleunen M, Pyšek P, Richardson DM (2016) EMAPi 2015: highlighting links between science and management of alien plant invasions. NeoBiota 30:1–3. doi:10.3897/neobiota.30.9594 CrossRefGoogle Scholar
  11. Dietz H, Kueffer C, Parks CG (2006) MIREN: a new research network concerned with plant invasion into mountain areas. Mount Res Develop 26:80–81. doi:10.1659/0276-4741(2006)026[0080:MANRNC]2.0.CO;2Google Scholar
  12. Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) (1989) Biological invasions: a global perspective. Wiley, ChichesterGoogle Scholar
  13. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. doi:10.1016/S0169-5347(98)01554-7 CrossRefPubMedGoogle Scholar
  14. Eriksen RL, Hierro JL, Eren Ö, Andonian K, Török K, Becerra PI, Montesinos D, Khetsuriani L, Diaconu A, Kesseli R (2014) Dispersal pathways and genetic differentiation among worldwide populations of the invasive weed Centaurea solstitialis L. (Asteraceae). PLoS ONE 9:e114786CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fraser LH, Henry HAL, Carlyle CN, White SR, Beierkuhnlein C, Cahill JF Jr, Casper BB, Cleland E, Collins SL, Dukes JS, Knapp AK, Lind E, Long R, Luo Y, Reich PB, Smith MD, Sternberg M, Turkington R (2013) Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front Ecol Environ 11:147–155. doi:10.1890/110279 CrossRefGoogle Scholar
  16. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17. doi:10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2Google Scholar
  17. Gaziulusoy AI, Ryan C, McGrail S, Chandler P, Twomey P (2016) Identifying and addressing challenges faced by transdisciplinary research teams in climate change research. J Clean Prod 123:55–64. doi:10.1016/j.jclepro.2015.08.049 CrossRefGoogle Scholar
  18. Guarino F, Cicatelli A, Brundu G, Heinze B, Castiglione S (2015) Epigenetic diversity of clonal white poplar (Populus alba L.) populations: could methylation support the success of vegetative reproduction strategy? PLoS ONE 10(7):e0131480. doi:10.1371/journal.pone.0131480 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  20. Guo WY, Lambertini C, Nguyen LX, Li XZ, Brix H (2014) Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America. Ecol Evol 4:4567–4577. doi:10.1002/ece3.1286 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Guo WY, Lambertini C, Guo X, Li XZ, Eller F, Brix H (2016) Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: differences between the native and introduced ranges. Biol Invasions 18:2551. doi:10.1007/s10530-016-1236-9 CrossRefGoogle Scholar
  22. He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706CrossRefPubMedGoogle Scholar
  23. Hejda M (2013) Do species differ in their ability to coexist with the dominant alien Lupinus polyphyllus? A comparison between two distinct invaded ranges and a native range. NeoBiota 17:39–55CrossRefGoogle Scholar
  24. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15CrossRefGoogle Scholar
  25. Hierro JL, Eren Ö, Villarreal D, Chiuffo MC (2013) Non-native conditions favor non-native populations of invasive plant: demographic consequences of seed size variation? Oikos 122:583–590CrossRefGoogle Scholar
  26. Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193CrossRefGoogle Scholar
  28. Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847CrossRefGoogle Scholar
  29. Iannone BV, Potter KM, Guo Q, Liebhold AM, Pijanowski BC, Oswalt CM, Fei S (2016) Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns. Ecography (in press, doi: 10.1111/ecog.01973)
  30. Jarnevich CS, Simpson A, Graham JJ, Newman GJ, Bargeron CT (2015) Running a network on a shoestring: the Global Invasive Species Information Network. Manage Biol Invasions 6:137–146. doi:10.3391/mbi.2015.6.2.04 CrossRefGoogle Scholar
  31. Jeschke JM, Aparicio LG, Haider S, Heger T, Lortie CJ, Pyšek P, Strayer DL (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20. doi:10.3897/neobiota.14.3435 CrossRefGoogle Scholar
  32. Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714CrossRefGoogle Scholar
  33. Katsanevakis S, Roy HE (2015) Alien species related information systems and information management. Manage Biol Invasions 6:115–117. doi:10.3391/mbi.2015.6.2.01 CrossRefGoogle Scholar
  34. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170CrossRefGoogle Scholar
  35. Kolar CS, Lodge TS (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204CrossRefPubMedGoogle Scholar
  36. Kowarik I, Starfinger U (2009) Neobiota: a European approach. NeoBiota 8:21–28Google Scholar
  37. Kueffer C (2010) Transdisciplinary research is needed to predict plant invasions in an era of global change. Trends Ecol Evol 25:619–620CrossRefPubMedGoogle Scholar
  38. Kueffer C (2016) A year without flying: the importance of virtual networking, The Mountain Blogs, Mountain Research Institute. Posted 22 January 2016. http://www.blogs-mri.org/a-year-without-flying/. Accessed 31 Aug 2016
  39. Kueffer C, Pyšek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis, and invasion syndromes. New Phytol 200:615–633. doi:10.1111/nph.12415 CrossRefPubMedGoogle Scholar
  40. Kühn I, Kowarik I, Kollmann J, Starfinger U, Bacher S, Blackburn TM, Bustamante RO, Celesti-Grapow L, Chytrý M, Colautti RI, Essl F, Foxcroft LC, García-Berthou E, Gollasch S, Hierro J, Hufbauer RA, Hulme PE, Jarošík V, Jeschke JM, Karrer G, Mack RN, Molofsky J, Murray BR, Nentwig W, Osborne B, Pyšek P, Rabitsch W, Rejmánek M, Roques A, Shaw R, Sol D, van Kleunen M, Vilà M, von der Lippe M, Wolfe LM, Penev L (2011) Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota 9:1–12. doi:10.3897/neobiota.9.1835 CrossRefGoogle Scholar
  41. Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, Costello MJ, Fernández M, Gregory RD, Hobern D, Hui C, Jetz W, Kumschick S, McGrannachan C, Pergl J, Roy HE, Scalera R, Squires ZE, Wilson JRU, Winter M, Genovesi P, McGeoch MA (2016) A vision for global monitoring of biological invasions. Biol Cons. doi:10.1016/j.biocon.2016.06.013 Google Scholar
  42. Lee Y, Kotanen PM (2015) Differences in herbivore damage and performance among Arctium minus (burdock) genotypes sampled from a geographic gradient: a common garden experiment. Biol Invasions 17:397–408CrossRefGoogle Scholar
  43. Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham HP, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91PubMedGoogle Scholar
  44. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536CrossRefGoogle Scholar
  45. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10:539–550CrossRefPubMedGoogle Scholar
  46. Lord J, Whitlatch R (2015) Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages. Ecology 96:1264–1274CrossRefPubMedGoogle Scholar
  47. Lu XM, Siemann E, He MY, Wei H, Shao X, Ding J (2015) Climate warming increases biological control agent impact on a non-target species. Ecol Lett 18:48–56CrossRefPubMedGoogle Scholar
  48. Lucy FE, Roy H, Simpson A, Carlton JT, Hanson JM, Magellan K, Campbell ML, Costello MJ, Pagad S, Hewitt CL, McDonald J, Cassey P, Thomaz SM, Katsanevakis S, Zenetos A, Tricarico E, Boggero E, Groom QJ, Adriaens T, Vanderhoeven S, Torchin M, Hufbauer R, Fuller P, Carman MR, Conn DB, Vitule JRS, Canning-Clode J, Galil BS, Ojaveer H, Bailey SA, Therriault TW, Claudi R, Gazda A, Dick JTA, Caffrey J, Witt A, Kenis M, Lehtiniemi M, Helmisaari H, Panov VE (2016) INVASIVESNET towards an international association for open knowledge on invasive alien species. Manage Biol Invasions 7:131–139CrossRefGoogle Scholar
  49. Maron J, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecol Monog 2:261-280. http://www.jstor.org/stable/4539056Google Scholar
  50. Max-Neef MA (2005) Foundations of transdisciplinarity. Ecol Econ 53:5–16CrossRefGoogle Scholar
  51. McDougall K, Alexander J, Haider S, Pauchard A, Walsh N, Kueffer C (2011) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111CrossRefGoogle Scholar
  52. Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Front Ecol Environ 5:199–208CrossRefGoogle Scholar
  53. Meyerson LA, Reaser JK (2003) Biosecurity, bioterrorism, and invasive alien species. Front Ecol Environ 1:307–314CrossRefGoogle Scholar
  54. Meyerson LA, Viola D, Brown R (2010) Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol Invasions 12:103–111CrossRefGoogle Scholar
  55. Meyerson LA, Cronin JT, Bhattarai GP, Brix H, Lambertini C, Lučanová M, Rinehart S, Suda J, Pyšek P (2016a) Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interaction with herbivores? Biol Invasions 2016:1–19. doi:10.1007/s10530-016-1200-8 Google Scholar
  56. Meyerson LA, Cronin JT, Pyšek P (2016b) Phragmites australis as a model organism for studying plant invasions. Biol Invasions 2016:1–11. doi:10.1007/s10530-016-1132-3 Google Scholar
  57. Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) (2005) Invasive alien species: a new synthesis. Island Press, WashingtonGoogle Scholar
  58. Nassauer JI, Opdam P (2008) Design in science: extending the landscape ecology paradigm. Landsc Ecol 23:633–644CrossRefGoogle Scholar
  59. Ndlovu J, Richardson DM, Wilson JRU, Le Roux JJ (2013) Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J Biogeogr 40:1240–1251CrossRefGoogle Scholar
  60. Packer JG, Delean S, Kueffer C, Prider J, Abley K, Facelli JM, Carthew SM (2016) Native faunal communities depend on habitat from non-native plants in novel but not in natural ecosystems. Biodiv Conserv 25:503–523CrossRefGoogle Scholar
  61. Pagad S, Genovesi P, Carnevali L, Scalera R, Clout M (2015) IUCN SSC Invasive Species Specialist Group: invasive alien species information management supporting practitioners, policy makers and decision takers. Manage Biol Invasions 6:127–135CrossRefGoogle Scholar
  62. Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C, Blumenthal DM, Bossdorf O, Byers JE, Dunn AM, Heckman RW, Hejda M, Jarošík V, Kanarek AR, Martin LB, Perkins SE, Pyšek P, Schierenbeck K, Schlöder C, van Klinken R, Vaughn KJ, Williams W, Wolfe LM (2013) Do invasive species perform better in their new ranges? Ecology 94:985–994. doi:10.1890/12-1810.1 CrossRefPubMedGoogle Scholar
  63. Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946CrossRefPubMedGoogle Scholar
  64. Petersen AM, Pavlidis I, Semendeferi I (2014) A quantitative perspective on ethics in large team science. Sci Engin Ethics 20:923–945. doi:10.1007/s11948-014-9562-8 CrossRefGoogle Scholar
  65. Pohl C (2005) Transdisciplinary collaboration in environmental research. Futures 37:1159–1178CrossRefGoogle Scholar
  66. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions, Ecological studies 193. Springer-Verlag, Berlin, pp 97–125Google Scholar
  67. Pyšek P, Richardson DM, Jarošík V (2006) Who cites who in the invasion zoo: insights from an analysis of the most highly cited papers in invasion ecology. Preslia 78:437–468Google Scholar
  68. Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244. doi:10.1016/j.tree.2008.02.002 CrossRefPubMedGoogle Scholar
  69. Pyšek P, Jarošík V, Pergl J, Randall R, Chytrý M, Kühn I, Tichý L, Danihelka J, Chrtek jun J, Sádlo J (2009) The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers Distrib 15(5):891–903CrossRefGoogle Scholar
  70. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau A-M, Nentwig W, Pergl J, Poboljšaj K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilà M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162. doi:10.1073/pnas.1002314107 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pyšek P, Manceur AM, Alba C, McGregor KF, Pergl J, Štajerová K, Chytrý M, Danihelka J, Kartesz J, Klimešová J, Lučanová M, Moravcová L, Nishino M, Sádlo J, Suda J, Tichý L, Kühn I (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–774. doi:10.1890/14-1005.1 CrossRefPubMedGoogle Scholar
  72. Rapo C, Muller-Scharer H, Vrieling K, Schaffner U (2010) Is there rapid evolutionary response in introduced populations of tansy ragwort, Jacobaea vulgaris, when exposed to biological control? Evol Ecol 24:1081–1099CrossRefGoogle Scholar
  73. Ravenscroft CH, Whitlock R, Fridley JD (2015) Rapid genetic divergence in response to 15 years of simulated climate change. Glob Change Biol 21:4165–4176CrossRefGoogle Scholar
  74. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Diversity Distrib 19:1093–1094CrossRefGoogle Scholar
  75. Ricciardi A, Steiner WWM, Mack RN, Simberloff D (2000) Toward a global information system for invasive species. Bioscience 50:239–244. doi:10.1641/0006-3568(2000)050[0239:TAGISF]2.3.CO;2Google Scholar
  76. Richardson DM (2011) Invasion science: the roads travelled and the roads ahead. In: Richardson DM (ed) Fifty years of invasion ecology. The legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 397–407. doi: 10.1002/9781444329988.ch29
  77. Richardson DM, Bond WJ (1991) Determinants of plant distribution: evidence from pine invasions. Am Nat 137:639–668CrossRefGoogle Scholar
  78. Richardson BJ, Lefroy T (2016) Restoration dialogues: improving the governance of ecological restoration. Restor Ecol 24:668–673. doi:10.1111/rec.12391 CrossRefGoogle Scholar
  79. Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Progr Phys Geogr 30:409–431CrossRefGoogle Scholar
  80. Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographic patterns. New Phytol 196:383–396CrossRefPubMedGoogle Scholar
  81. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions: the role of mutualisms. Biol Rev 75:65–93CrossRefPubMedGoogle Scholar
  82. Richardson DM, Rouget M, Rejmánek M (2004) Using natural experiments in the study of alien tree invasions: opportunities and limitations. In: Gordon MS, Bartol SM (eds) Experimental approaches to conservation biology. University of California Press, Berkeley, pp 180–201CrossRefGoogle Scholar
  83. Richardson DM, van Wilgen BW, Nunez MA (2008) Alien conifer invasions in South America: short fuse burning? Biol Invasions 10:573–577CrossRefGoogle Scholar
  84. Richardson DM, Daehler CC, Leishman MR, Pauchard A, Pyšek P (2010) Plant invasions: theoretical and practical challenges. Biol Invasions 12:3907–3911CrossRefGoogle Scholar
  85. Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, Le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias: a global experiment in biogeography. Diversity Distrib 17:771–787CrossRefGoogle Scholar
  86. Rodríguez-Echeverría S (2010) Rhizobial hitchhikers from Down Under: invasional meltdown in a plant-bacteria mutualism? J Biogeogr 37:1611–1622Google Scholar
  87. Rogers WE, Siemann E (2004) Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum. J Appl Ecol 41:561–570CrossRefGoogle Scholar
  88. Roques A, Fan J-T, Courtial B, Zhang Y-Z, Yart A, Auger-Rozenberg M-A, Denux O, Kenis M, Baker R, Sun J-H (2015) Planting sentinel European trees in Eastern Asia as a novel method to identify potential insect pest invaders. PLoS ONE 10:e0120864CrossRefPubMedPubMedCentralGoogle Scholar
  89. Schrey AW, Alvarez M, Foust CM, Kilvitis HJ, Lee JD, Liebl LB, Martin CL, Richards M, Robertson AW (2013) Ecological epigenetics: beyond MS-AFLP. Integr Comp Biol 53(2):340–350. doi:10.1093/icb/ict012 CrossRefPubMedGoogle Scholar
  90. Simberloff D, Nuñez M, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, van Wilgen BW, Zalba SM, Zenni RD, Bustamante R, Peña E, Ziller SR (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504. doi:10.1111/j.1442-9993.2009.02058.x CrossRefGoogle Scholar
  91. Strayer DL (2012) Eight questions about invasions and ecosystem functioning. Ecol Lett 15:1199–1210. doi:10.1111/j.1461-0248.2012.01817.x CrossRefPubMedGoogle Scholar
  92. Suda J, Meyerson LA, Leitch I, Pyšek P (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007. doi:10.1111/nph.13107 CrossRefPubMedGoogle Scholar
  93. Tho BT, Sorrell BK, Lambertini C, Eller F, Brix H (2016) Phragmites australis: how do genotypes of different phylogeographic origin differ from their invasive genotypes in growth, nitrogen allocation and gas exchange? Biol Invasions 18:2563–2576. doi:10.1007/s10530-016-1158-6 CrossRefGoogle Scholar
  94. Thompson GD, Bellstedt DU, Richardson DM, Wilson JRU, Le Roux JJ (2015) A tree well travelled: global genetic structure of the invasive tree Acacia saligna. J Biogeogr 42:305–314. doi:10.1111/jbi.12436 CrossRefGoogle Scholar
  95. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245CrossRefPubMedGoogle Scholar
  96. van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit Kupriyanov A, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu W, Thomas J, Velayos M, Wieringa JJ, Pyšek P (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103. doi:10.1038/nature14910 CrossRefPubMedGoogle Scholar
  97. van Wilgen BW, Davies SJ, Richardson DM (2014) Invasion science for society: a decade of contributions from the Centre for Invasion Biology. S Afr J Sci. doi:10.1590/sajs.2014/a0074 Google Scholar
  98. Walther GR, Gritti ES, Berger S, Hickler T, Tang ZY, Sykes MT (2007) Palms tracking climate change. Global Ecol Biogeogr 16:801–809CrossRefGoogle Scholar
  99. Wickson F, Carew AL, Russell AW (2006) Transdisciplinary research: characteristics, quandaries and quality. Futures 38:1046–1059. doi:10.1016/j.futures.2006.02.011 CrossRefGoogle Scholar
  100. Wilson JRU, Caplat P, Dickie IA, Hui C, Maxwell BD, Nuñez MA, Pauchard A, Rejmánek M, Richardson DM, Robertson MP, Spear D, Webber BL, van Wilgen BW, Zenni RD (2014) A standardized set of metrics to assess and monitor tree invasions. Biol Invasions 16:535–551. doi:10.1007/s10530-013-0605-x CrossRefGoogle Scholar
  101. Woodford DJ, Richardson DM, MacIsaac HJ, Mandrak NE, van Wilgen BW, Wilson JRU, Weyl OLF (2016) Confronting the wicked problem of managing biological invasions. Neobiota 31:63–86CrossRefGoogle Scholar
  102. Zenetos A. (ed.), 2015. Illustrated Guide of Marine Alien species in the Mediterranean for Students and Citizen Scientists. COST1209 Action: Alien Challenge, 22 ppGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jasmin G. Packer
    • 1
    • 2
    • 3
  • Laura A. Meyerson
    • 4
  • David M. Richardson
    • 5
  • Giuseppe Brundu
    • 6
  • Warwick J. Allen
    • 7
  • Ganesh P. Bhattarai
    • 8
  • Hans Brix
    • 9
  • Susan Canavan
    • 5
    • 10
  • Stefano Castiglione
    • 11
  • Angela Cicatelli
    • 11
  • Jan Čuda
    • 12
    • 13
  • James T. Cronin
    • 7
  • Franziska Eller
    • 9
  • Francesco Guarino
    • 11
  • Wei-Hua Guo
    • 14
    • 15
  • Wen-Yong Guo
    • 12
  • Xiao Guo
    • 14
    • 15
    • 16
  • José L. Hierro
    • 17
    • 18
  • Carla Lambertini
    • 9
  • Jian Liu
    • 19
  • Vanessa Lozano
    • 6
  • Thomas J. Mozdzer
    • 20
  • Hana Skálová
    • 12
  • Diego Villarreal
    • 18
  • Ren-Qing Wang
    • 14
    • 15
  • Petr Pyšek
    • 12
    • 13
  1. 1.Environment InstituteThe University of AdelaideAdelaideAustralia
  2. 2.School of Biological SciencesThe University of AdelaideAdelaideAustralia
  3. 3.Department of Environmental Systems Science, Institute of Integrative BiologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
  4. 4.Department of Natural Resources ScienceThe University of Rhode IslandKingstonUSA
  5. 5.Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
  6. 6.Department of AgricultureUniversity of SassariSassariItaly
  7. 7.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  8. 8.Indian River Research and Education CenterUniversity of FloridaFort PierceUSA
  9. 9.Department of BioscienceAarhus UniversityÅrhus CDenmark
  10. 10.Invasive Species Programme, South African National Biodiversity InstituteKirstenbosch Research CentreClaremontSouth Africa
  11. 11.Department of Chemistry and Biology “A. Zambelli”University of SalernoFiscianoItaly
  12. 12.Institute of BotanyThe Czech Academy of SciencesPrůhoniceCzech Republic
  13. 13.Department of Ecology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  14. 14.Institute of Ecology and Biodiversity, School of Life SciencesShandong UniversityJinanPeople’s Republic of China
  15. 15.Shandong Provincial Engineering and Technology Research Center for Vegetation EcologyShandong UniversityJinanPeople’s Republic of China
  16. 16.College of Landscape Architecture and ForestryQingdao Agricultural UniversityQingdaoPeople’s Republic of China
  17. 17.Instituto de Ciencias de la Tierra y Ambientales (CONICET-UNLPam)Santa RosaArgentina
  18. 18.Universidad Nacional de La PampaSanta RosaArgentina
  19. 19.Institute of Environmental ResearchShandong UniversityJinanPeople’s Republic of China
  20. 20.Department of BiologyBryn Mawr CollegeBryn MawrUSA

Personalised recommendations