Biological Invasions

, Volume 19, Issue 2, pp 455–461 | Cite as

Shade tolerance of Ailanthus altissima revisited: novel insights from southern Switzerland

  • Simon KnüselEmail author
  • Andrea De Boni
  • Marco Conedera
  • Patrick Schleppi
  • Jean-Jacques Thormann
  • Monika Frehner
  • Jan Wunder
Invasion Note


The tree of heaven (Ailanthus altissima (Mill.) Swingle) is considered to be an early-successional, gap-obligate pioneer species with vigorous height growth, low shade tolerance, early fecundity and large seed production. It is a highly invasive species in many temperate and Mediterranean ecosystems outside its natural range, especially after disturbance. Due to its low shade tolerance, the potential of A. altissima to colonise undisturbed forests is thought to be low. In this study we analysed the potential of juvenile A. altissima to grow and survive in sweet chestnut (Castanea sativa Mill.) forests in southern Switzerland. We used hemispherical photography to assess the light conditions of 204 individuals of A. altissima (31 % generative, 69 % vegetative) aged between 1 and 7 years (median: 3 years) in six sites. Generative (seed-borne) and vegetative (clonal ramet) offspring of A. altissima are able to grow in light conditions well below the requirements of shade-intolerant tree species such as European larch (Larix decidua Mill.) and Scots pine (Pinus sylvestris L.). The relatively low light conditions found to be sufficient for the growth and survival of generative regeneration of A. altissima suggest a higher shade tolerance for this species than previously stated, at least for early regeneration. Consequently, the colonisation frontier of A. altissima should be intensively monitored in both forest openings but also in closed canopy forests in the vicinity of seed-bearing A. altissima.


Shade tolerance Light requirement Invasive tree Colonisation 



We would like to thank Harald Bugmann, Aníbal Pauchard and two anonymous reviewers for valuable comments on earlier versions of the manuscript. This study was funded by the Bern University of Applied Sciences (BFH), the Federal Office for the Environment (FOEN), the Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), and the Lead Agency process of the Swiss National Science Foundation (SNF) and the French National Research Agency (ANR) (Project-Nr.: 310030L_156661).


  1. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66CrossRefGoogle Scholar
  2. Boring LR, Swank WT (1984) The role of black locust (Robinia pseudo-acacia) in forest succession. J Ecol 72:749–766CrossRefGoogle Scholar
  3. Bory G, Clair-Maczulajtys D (1980) Production, dissemination and polymorphism of seeds in Ailanthus altissima. Rev Gen Bot 88:297–311Google Scholar
  4. Cadotsch D (2011) Untersuchung zum Höhenwachstum der Weisstanne (Abies alba)—Vergleich zwischen Nord- und Südbünden. School of Agricultural, Forest and Food Sciences HAFL. Bern University of Applied Sciences BFH, Zollikofen, p 90Google Scholar
  5. Canham CD (1988) An index for understory light levels in and around canopy gaps. Ecology 69:1634–1638CrossRefGoogle Scholar
  6. Chytrý M, Maskell LC, Pino J et al (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458CrossRefGoogle Scholar
  7. Conedera M, Stanga P, Oester B et al (2001) Different post-culture dynamics in abandoned chestnut orchards and coppices. For Snow Landsc Res 76:487–492Google Scholar
  8. De Boni A (2013) Analisi del comportamento della rinnovazione di ailanto (Ailanthus altissima (Mill.) Swingle) in funzione della luce. School of Agricultural, Forest and Food Sciences HAFL. Bern University of Applied Sciences BFH, Zollikofen, p 82Google Scholar
  9. Fotiadis G, Kyriazopoulos AP, Fraggakis I (2011) The behaviour of Ailanthus altissima weed and its effects on natural ecosystems. J Environ Biol 32:801–806PubMedGoogle Scholar
  10. Frehner M (2000) Untersuchung über den Einfluss unterschiedlicher Kleinstandorte und der Pflanztechnik auf Fichtenpflanzungen in subalpinen Lawinenschutzwäldern. Beih Schweiz Z Forstwes 92:339–556Google Scholar
  11. Gómez-Aparicio L, Canham CD (2008) Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J Ecol 96:447–458CrossRefGoogle Scholar
  12. Gonzalez-Munoz N, Castro-Diez P, Fierro-Brunnenmeister N (2011) Establishment success of coexisting native and exotic trees under an experimental gradient of irradiance and soil moisture. Environ Manag 48:764–773CrossRefGoogle Scholar
  13. Grime JP, Jeffrey DW (1965) Seedling establishment in vertical gradients of sunlight. J Ecol 53:621–642CrossRefGoogle Scholar
  14. Imbeck H, Ott E (1987) Verjüngungsökologische Untersuchungen in einem hochstaudenreichen subalpinen Fichtenwald mit spezieller Berücksichtigung der Schneeablagerung und der Lawinenbildung. Mitt Eidg Inst Schnee Lawinenforschung 42:202Google Scholar
  15. Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127:307–315CrossRefGoogle Scholar
  16. Knüsel S, Conedera M, Rigling A et al (2015) A tree-ring perspective on the invasion of Ailanthus altissima in protection forests. For Ecol Manag 354:334–343CrossRefGoogle Scholar
  17. Kobe RK, Pacala SW, Silander JA et al (1995) Juvenile tree survivorship as a component of shade tolerance. Ecol Appl 5:517–532CrossRefGoogle Scholar
  18. Kota NL, Landenberger RE, McGraw JB (2007) Germination and early growth of Ailanthus and tulip poplar in three levels of forest disturbance. Biol Invasions 9:197–211CrossRefGoogle Scholar
  19. Kowarik I (1995) Clonal growth in Ailanthus altissima on a natural site in West Virginia. J Veg Sci 6:853–856CrossRefGoogle Scholar
  20. Kowarik I, Säumel I (2007) Biological flora of central Europe: Ailanthus altissima (Mill.) swingle. Perspect Plant Ecol Evol Syst 8:207–237CrossRefGoogle Scholar
  21. Krebs B (2001) Untersuchungen zum Höhenwachstum des Lärchenaufwuchses in Abhängigkeit vom direkten und diffusen Licht im Engadin. Department of Forest Sciences, ETH Zürich, Zürich, p 98Google Scholar
  22. Lamarque LJ, Delzon S, Lortie CJ (2011) Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biol Invasions 13:1969–1989CrossRefGoogle Scholar
  23. Martin PH, Canham CD, Kobe RK (2010) Divergence from the growth-survival trade-off and extreme high growth rates drive patterns of exotic tree invasions in closed-canopy forests. J Ecol 98:778–789CrossRefGoogle Scholar
  24. Niinemets U, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76:521–547CrossRefGoogle Scholar
  25. Perren B, Rigling A, Walthert L (1992) Verjüngungsökologie und -dynamik der waldföhrenreichen Wälder im Gebiet Brienz-Wiesen (GR) - mit besonderer Berücksichtigung des Standortes, der Verjüngungsökologie und der Entwicklungsdynamik. Department of Forest Sciences. ETH Zürich, Zürich, pp 269Google Scholar
  26. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  27. Radtke A, Ambrass S, Zerbe S et al (2013) Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For Ecol Manag 291:308–317CrossRefGoogle Scholar
  28. Richardson DM, Hui C, Nunez MA et al (2014) Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions 16:473–481CrossRefGoogle Scholar
  29. Schleppi P, Conedera M, Sedivy I et al (2007) Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric For Meteorol 144:236–242CrossRefGoogle Scholar
  30. Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66CrossRefPubMedGoogle Scholar
  31. Walther GR, Roques A, Hulme PE et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Community Ecology, WSL Swiss Federal Institute for ForestSnow and Landscape ResearchCadenazzoSwitzerland
  2. 2.Department of Environmental Sciences, Forest EcologySwiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
  3. 3.Bern University of Applied Sciences (BFH)ZollikofenSwitzerland
  4. 4.Forest Soils and Biogeochemistry, WSL Swiss Federal Institute for ForestSnow and Landscape ResearchBirmensdorfSwitzerland
  5. 5.Forstingenieurbüro Dr. Monika FrehnerSargansSwitzerland
  6. 6.School of EnvironmentThe University of AucklandAucklandNew Zealand

Personalised recommendations