Biological Invasions

, Volume 19, Issue 1, pp 283–305 | Cite as

The invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world: history, pathways and vectors

  • Joel C. Creed
  • Douglas Fenner
  • Paul Sammarco
  • Stephen Cairns
  • Kátia Capel
  • Andrea O. R. Junqueira
  • Igor Cruz
  • Ricardo J. Miranda
  • Lélis Carlos-Junior
  • Marcelo Checoli Mantelatto
  • Simone Oigman-Pszczol
Original Paper


In this review, we describe the history, pathways and vectors of the biological invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world. In order to do so we consulted previous reports in the literature and also compiled new unpublished information on the distribution of the three species of Tubastraea which have been reported as non indigenous species, both within their native and non-native ranges and also on vectors, and where cryptogenic. We combine these data with historical aspects of marine vectors in order to get insights into how Tubastraea species have successfully spread around the world, established and invaded and where future studies would be best focused. T. coccinea and T. tagusensis are recognized as being highly invasive and are causing significant environmental, economic, and social impacts requiring management actions. The third species, T. micranthus so far only reported outside its native range on oil platforms, may have similar potential for negative impact. The vectors of introduction of Tubastraea may have changed throughout history and the biological invasion of these invasive corals may reflect changing practices, demands and legislation in shipping activities over the years. Today it is clear that these corals are fouling organisms strongly associated with oil and gas platforms worldwide which are thus primary vectors for new introductions.


azooxanthellate Scleractinia Biological invasion impact Cryptogenic Cup coral Distribution Non-indigenous species NIS Oil platforms Pathway Range expansion Review Sun coral Tubastraea coccinea T. tagusensis T. micranthus Vector 



We would like to thank those who contributed with personal communications. We also thank Jorge Miguel Rodrigues Fontes, Scott A. Porter, Leonardo Schlögel Bueno and Gilberto Morão/Projeto Coral-Sol for kindly giving permission to use their photographs as well as Jim Carlton and an anonymous reviewer for their comments which improved the manuscript. JCC would especially like to thank Anna Maria Scofano (Petrobras) whose comments encouraged the publication of this review and provided further information regarding contaminated platforms operating in Brazil. We acknowledge funding by Universidade do Estado do Rio de Janeiro—Prociencia, the National Council for Scientific and Technological Development—CNPq n° 151431/2014-0, Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro—FAPERJ and Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES). ICSC acknowledges a postdoctoral grant by Foundation for Research Support of the State of São Paulo—(2014/17815-0). RJM thanks The Rufford Foundation for financial support to Projeto Corais da Baía (Small Grant n°13119-1). This is Scientific Contribution No. 26 of the Projeto Coral-Sol.

Supplementary material

10530_2016_1279_MOESM1_ESM.xlsx (59 kb)
Supplementary material 1 (XLSX 59 kb)


  1. Arrigoni R, Kitano YF, Stolarski J, Hoeksema BW, Fukami H, Stefani F, Galli P, Montano S, Castoldi E, Benzoni F (2014) A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zoologica Scr 43:661–688CrossRefGoogle Scholar
  2. Ayre DJ, Resing JM (1986) Sexual and assexual production of planulae in reef corals. Mar Biol 90:187–190CrossRefGoogle Scholar
  3. Baarli BG, Santos AG, Mayoral EJ, Ledesma-Vazquez J, Johnson ME, Da Silva CM, Cachão M (2013) What Darwin did not see: pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geol Mag 150:183–189CrossRefGoogle Scholar
  4. Barreiros JP, Hostim-Silva M, Afonso P, Fontes J, Lucini P, Andrade A, Wegner E (2000) Peixes numa plataforma de petróleo ao largo do Brasil. Mundo Submerso 43:50–54Google Scholar
  5. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323CrossRefGoogle Scholar
  6. Boekschoten G, Best MB (1988) Fossil and recent shallow water corals from the Atlantic islands off western Africa. Zool Meded 62:99–112Google Scholar
  7. Boschma H (1951) Deling bij Tubastrea. Versl Gewone Vergad Afd Natuurk K Ned Akad 60:44–46Google Scholar
  8. Boschma H (1953) On specimens of the coral genus Tubastrea, with notes on phenomena of fission. Stud Fauna Curaçao Caribb Isl 4:109–119Google Scholar
  9. Cairns SD (1991) A revision of the ahermatypic Scleractinia of the Galápagos and Cocos islands. Smithson Contrib Zool 504:1–56Google Scholar
  10. Cairns SD (1994) Scleractinia of the temperate north Pacific. Smithson Contrib Zool 557:1–150Google Scholar
  11. Cairns SD (1999) Stratigraphic distribution of Neogene Caribbean azooxanthellate corals (Scleractinia and Stylasteridae). Distribución estratigráfica de los corales azooxantelados del Neógeno caribeño (Scleractinia y Stylasteridae). Bull Am Paleontol 357:109–118Google Scholar
  12. Cairns SD (2000) A revision of the shallow-water azooxanthellate Scleractinia of the Western Atlantic. Stud Nat Hist Caribb 75:1–240Google Scholar
  13. Cairns SD (2001) A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithson Contrib Zool 615:1–75CrossRefGoogle Scholar
  14. Cairns S, Zibrowius H (1997) Cnidaria Anthozoa: azooxanthellate Scleractinia from the Philippine and Indonesian regions. Mem Mus Natn Hist Nat 172:27–243Google Scholar
  15. Campbell M (2009) An overview of risk assessment in a marine biosecurity context. In: Rilov G, Crooks J (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 353–373. doi: 10.1007/978-3-540-79236-9_20 CrossRefGoogle Scholar
  16. Capel KCC, Migotto AE, Zilberberg C, Kitahara MV (2014) Another tool towards invasion? Polyp “bail-out” in Tubastraea coccinea. Coral Reefs 33:1165. doi: 10.1007/s00338-014-1200-z CrossRefGoogle Scholar
  17. Carlos-Júnior LA, Barbosa NPU, Moulton TP, Creed JC (2015) Ecological Niche Model used to examine the distribution of an invasive, non-indigenous coral. Mar Environ Res 103:115–124. doi: 10.1016/j.marenvres.2014.10.004 PubMedCrossRefGoogle Scholar
  18. Carlton JT (2009) Deep invasion ecology and the assembly of communities in historical time. In: Rilov G, Crooks J (eds) Biological invasions in marine ecosystems. Springer, Berlin Heidelberg, pp 13–56CrossRefGoogle Scholar
  19. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonidigenous marine organisms. Science 261:78–82CrossRefGoogle Scholar
  20. Carpenter KE, Harrison PL, Hodgson G, Alsaffar AH, Aihazeem SH, Randall JE (1997) Corals and coral reef fishes of Kuwait. Institute for Scientific Research,Safat, KuwaitGoogle Scholar
  21. Castro CB, Pires DO (2001) Brazilian Coral Reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371Google Scholar
  22. Chevalier JP (1966) Contribution á l’étude des Madréporaires des côtes occidentales de l’África tropicale Part II. Bulletin de I.F.A.N. 28, sér A:1356–1405Google Scholar
  23. Costa TJF et al (2014) Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic. Mar Pollut Bull 85:252–253. doi: 10.1016/j.marpolbul.2014.06.002 PubMedCrossRefGoogle Scholar
  24. Creed JC (2006) Two invasive alien azooxanthellate corals, Tubastraea coccinea and Tubastraea tagusensis, dominate the native zooxanthellate Mussismilia hispida in Brazil. Coral Reefs 25:350CrossRefGoogle Scholar
  25. Creed JC, De Paula AF (2007) Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar Ecol Prog Ser 330:101–111CrossRefGoogle Scholar
  26. Creed JC, Oliveira AES, De Paula AF (2008) Cnidaria, Scleractinia, Tubastraea coccinea Lesson, 1829 and Tubastraea tagusensis Wells, 1982: distribution extension. Check List 4:297–300CrossRefGoogle Scholar
  27. Creed JC, Menegola C, Cruz I, Miranda R (2014) Vistoria da plataforma de petróleo Petrobras P-27 e outras plataformas no Canteiro de São Roque, Paraguaçu, BA. Universidade do Estado do Rio de Janeiro; Universidade Federal da Bahia, Rio de JaneiroGoogle Scholar
  28. Cruz I, Kikuchi RKP, Leão Z (2009) Caracterização dos recifes de corais da área de preservação ambiental da Baía de Todos os Santos para fins de manejo, Bahia, Brasil. Revista da Gestão Costeira Integrada 9:3–23CrossRefGoogle Scholar
  29. Davidson IC, McCann LD, Sytsma MD, Ruiz GM (2008) Interrupting a multi-species bioinvasion vector: the efficacy of in-water cleaning for removing biofouling on obsolete vessels. Mar Pollut Bull 56:1538–1544. doi: 10.1016/j.marpolbul.2008.05.024 PubMedCrossRefGoogle Scholar
  30. De Paula AF (2007) Biologia reprodutiva, crescimento e competição dos corais invasores Tubastraea coccinea e Tubastraea tagusensis (Scleractinia: Dendrophyllidae) com espécies nativas. Universidade Federal do Rio de Janeiro, ThesisGoogle Scholar
  31. De Paula AF, Creed JC (2004) Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bull Mar Sci 74:175–183Google Scholar
  32. De Paula AF, Creed JC (2005) Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz J Biol 65:661–663PubMedCrossRefGoogle Scholar
  33. De Paula AF, Pires DO, Creed JC (2014) Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. J Mar Biol Assoc U K 94:481–492. doi: 10.1017/S0025315413001446 CrossRefGoogle Scholar
  34. Department of the Navy Bureau of Yards and Docks (1947) Building the navy’s bases in World War II - history of the Bureau of Yards and Docks and the Civil Engineer Corps 1940-1946, vol I. United States Government Printing Office, WashingtonGoogle Scholar
  35. Dokken Q (1993) Flower Gardens Ocean Research Project: using offshore platforms as research stations. Mar Technol Soc J 27:45–50Google Scholar
  36. Fenner D (1999) New observations on the stony coral (Scleractinia, Milleporidae, and Stylasteridae) species of Belize (Central America) and Cozumel (Mexico). Bull Mar Sci 64:143–154Google Scholar
  37. Fenner D (2001) Biogeography of three caribbean corals (Scleractinia) and a rapid range expansion of Tubastraea coccinea into the Gulf of Mexico. Bull Mar Sci 69:1175–1189Google Scholar
  38. Fenner D, Banks K (2004) Orange Cup Coral Tubastrea coccinea invades Florida and the Flower Garden Banks, Northwestern Gulf of Mexico. Coral Reefs 23:505–507Google Scholar
  39. Ferreira CEL (2003) Non-indigenous corals at marginal sites. Coral Reefs 22:498CrossRefGoogle Scholar
  40. Ferreira C, Gonçalves J, Coutinho R (2006) Ship hulls and oil platforms as potential vectors to marine species introduction. J Coastal Res 39:1340–1345Google Scholar
  41. Floerl O, Coutts A (2009) Potential ramifications of the global economic crisis on human-mediated dispersal of marine non-indigenous species. Marine Poll Bull 58:1595–1598Google Scholar
  42. Fofonoff PW, Ruiz GM, Steves B, Carlton JT (2003) In ships or on ships? Mechanisms of transfer and invasion for nonnative species to the coasts of North America. In: Ruiz GM, Carlton JT (eds) Invasive species: vectors and management strategies. Island Press, Wahsington, pp 152–182Google Scholar
  43. Friedlander AM, Ballesteros E, Fay M, Sala E (2014) Marine communities on cil platforms in Gabon, West Africa: high biodiversity oases in a low biodiversity environment. PLoS ONE 9:e103709. doi: 10.1371/journal.pone.0103709 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gittings SR (1992) Long-term monitoring of the East and West Flower Garden Banks Final Report. US Department of the Interior, Minerals Management Service, Gulf of Mexico, OCS Regional Office, New OrleansGoogle Scholar
  45. Glynn P, De Weerdt W (1991) Elimination of two reef-building hydrocorals following the 1982-83 El Nino warming event. Science (Washington) 253:69–71CrossRefGoogle Scholar
  46. Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands. Univ of California Press, BerkeleyGoogle Scholar
  47. Glynn PW et al (2008) Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the Equatorial Eastern Pacific: part V. Dendrophylliidae. Mar Biol 153:529–544. doi: 10.1007/s00227-007-0827-5 CrossRefGoogle Scholar
  48. Grosholz ED, Ruiz GM, Dean CA, Shirley KA, Maron JL, Connors PG (2000) The impacts of a nonindigenous marine predator in a California bay. Ecology 81:1206–1224CrossRefGoogle Scholar
  49. Hewitt C, Gollasch S, Minchin D (2009) The vessel as a vector–biofouling, ballast water and sediments. In: Rilov G, Crooks J (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 117–131. doi: 10.1007/978-3-540-79236-9_6 CrossRefGoogle Scholar
  50. Hickerson EL, Schmahl G, Robbart M, Precht WF, Caldow C (2008) The state of coral reef ecosystems of the Flower Garden Banks, Stetson Bank, and other banks in the northwestern Gulf of Mexico. In: Waddell JE, Clarke AM (eds) The state of coral reef ecosystems of the United States and Pacific Freely Associated States 2008. NOAA, Silver Spring, pp 189–217Google Scholar
  51. Hopkins GA (2010) Assessment and management of risks from biofouling. Victoria University of Wellington, ThesisGoogle Scholar
  52. Humann P, DeLoach N (2002) Reef coral identification: Florida, Caribbean, Bahamas, including marine plants. New World Publications, JacksonvilleGoogle Scholar
  53. International Maritime Organisation (2011) Guidelines for the control and management of ships’ biofouling to minimize the transfer of invasive aquatic species. Accessed 4 Aug 2014
  54. International Maritime Organisation MEPC (2012) Guidance for minimizing the transfer of invasive aquatic species as biofouling (hull fouling) for recreational craft. Accessed 4 Aug 2014
  55. Johnston E, Piola R, Clark G (2009) The role of propagule pressure in invasion success. In: Rilov G, Crooks J (eds) Biological invasions in marine ecosystems. Springer, Berlin, pp 133–151. doi: 10.1007/978-3-540-79236-9_7 CrossRefGoogle Scholar
  56. Laborel J (1974) West African reef corals: an hypothesis on their origin. In: Proceedings of 2nd international coral reef symposium. pp 425–442Google Scholar
  57. Lages BG, Fleury BG, Menegola C, Creed JC (2011) Change in tropical rocky shore communities due to an alien coral invasion. Mar Ecol Prog Ser 438:85–96. doi: 10.3354/meps09290 CrossRefGoogle Scholar
  58. Law RJ et al (2012) Butyltin compounds in liver of harbour porpoises (Phocoena phocoena) from the UK prior to and following the ban on the use of tributyltin in antifouling paints (1992–2005 & 2009). Mar Pollut Bull 64:2576–2580PubMedCrossRefGoogle Scholar
  59. Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortés J (ed) Latin America Coral Reefs. Elsevier, Amsterdam, pp 9–52CrossRefGoogle Scholar
  60. Lessios H (1988) Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annu Rev Ecol Syst 1988:371–393CrossRefGoogle Scholar
  61. Lessios HA, Robertson D, Cubit J (1984) Spread of Diadema mass mortality through the Caribbean. Science 226:335–337PubMedCrossRefGoogle Scholar
  62. Lindsay-Poland J (2009) US military bases in Latin America and the Caribbean. In: Catherine Lutz C, Enloe C (eds) The bases of empire: The global struggle against US military posts. NYU Press, New York, pp 71–96Google Scholar
  63. Lugo-Fernández A, Deslarzes KJ, Price JM, Boland GS, Morin MV (2001) Inferring probable dispersal of Flower Garden Banks coral larvae (Gulf of Mexico) using observed and simulated drifter trajectories. Cont Shelf Res 21:47–67CrossRefGoogle Scholar
  64. Mangelli TS, Creed JC (2012) Análise comparativa da abundância do coral invasor Tubastraea spp: (Cnidaria, Anthozoa) em substratos naturais e artificiais na Ilha Grande, Rio de Janeiro, Brasil. Iheringia Série Zool 102:122–130CrossRefGoogle Scholar
  65. Mantelatto MC (2012) Distribuição e abundancia de coral invasor Tubastraea spp. Dissertation, Universidade do Estado do Rio de JaneiroGoogle Scholar
  66. Mantelatto MC, Creed JC (2014) Non-indigenous sun corals invade mussel beds in Brazil. Mar Biodivers 45:605–606CrossRefGoogle Scholar
  67. Mantelatto M, Creed J, Mourão G, Migotto A, Lindner A (2011) Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs 30:397CrossRefGoogle Scholar
  68. Minchin, D (2007) Aquaculture and transport in a changing environment: overlap and links in the spread of alien biota. Marine Poll Bull 55:302–313Google Scholar
  69. Minchin D, Gollasch S, Cohen A, Hewitt C, Olenin S (2009) Characterizing Vectors of Marine Invasion. In: Rilov G, Crooks J (eds) Biological invasions in marine ecosystems. Springer, Berlin Heidelberg, pp 109–116. doi: 10.1007/978-3-540-79236-9_5 CrossRefGoogle Scholar
  70. Miranda RJ, Costa Y, Lorders FL, José de Anchieta C, Barros F (2016a) New records of the alien cup-corals (Tubastraea spp.) within estuarine and reef systems in Todos os Santos Bay Southwestern Atlantic. Mar Biodivers Rec 9:35CrossRefGoogle Scholar
  71. Miranda RJ, Cruz ICS, Barros F (2016b) Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar Biol 163:1–12CrossRefGoogle Scholar
  72. Mizrahi D (2008) Influência da temperatura e luminosidade na distribuição da espécie invasora Tubastraea coccinea na região de ressurgência de Arraial do Cabo—RJ. Dissertation, Universidade Federal do Rio de JaneiroGoogle Scholar
  73. Mizrahi D (2014) Influência de processos pré e pós-assentamento no padrão de ocorrência do coral sol, Tubastraea coccinea, no litoral norte do Estado de São Paulo. Universidade de São Paulo, ThesisGoogle Scholar
  74. Mizrahi D, Navarrete S, Flores AV (2014a) Groups travel further: pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33:443–448. doi: 10.1007/s00338-014-1135-4 CrossRefGoogle Scholar
  75. Mizrahi D, Navarrete SA, Flores AAV (2014b) Uneven abundance of the invasive sun coral over habitat patches of different orientation: an outcome of larval or later benthic processes? J Exp Mar Biol Ecol 452:22–30. doi: 10.1016/j.jembe.2013.11.013 CrossRefGoogle Scholar
  76. Moreira PL, Ribeiro FV, Creed JC (2014) Control of invasive marine invertebrates: an experimental evaluation of the use of low salinity for managing pest corals (Tubastraea spp.). Biofouling 30:639–650. doi: 10.1080/08927014.2014.906583 PubMedCrossRefGoogle Scholar
  77. Nehring S (2001) After the TBT era: alternative anti-fouling paints and their ecological risks. Senckenb Marit 31:341–351CrossRefGoogle Scholar
  78. Nicolau AL (1997) Num outro mundo. Revista da Petrobras 35:20–23Google Scholar
  79. Ocaña O, Hartog JCd, Brito A, Moro L, Herrera R, Martín J, Ramos-Esplá AA, Ballesteros E, Bacallado JJ (2015) A survey on Anthozoa and its habitats along the Northwest African coast and some islands: new records, descriptions of new taxa and biogeographical, ecological and taxonomical comments. Part I Rev Acad Canar Cienc 27:9–66Google Scholar
  80. Olenin S et al (2011) Recommendations on methods for the detection and control of biological pollution in marine coastal waters. Mar Pollut Bull 62:2598–2604PubMedCrossRefGoogle Scholar
  81. Otani M (2006) Important vectors for marine organisms unintentionally introduced to Japanese waters. In: Koike F, Clout MN, Kawamichi M, De Poorter M, Iwatsuki K (eds) Assessment and Control of Biological Invasion Risks. SHOUKADOH Book Sellers, Kyoto, Japan and the World Conservation Union (IUCN), Gland, Switzerland, pp 92–103Google Scholar
  82. Page HM, Dugan JE, Culver CS, Hoesterey JC (2006) Exotic invertebrate species on offshore oil platforms. Mar Ecol Prog Ser 325:101–107CrossRefGoogle Scholar
  83. Paz-García DA, Reyes-Bonilla H, González-Peralta A, Sánchez-Alcántara I (2007) Larval release from Tubastraea coccinea in the Gulf of California, Mexico. Coral Reefs 26:433. doi: 10.1007/s00338-007-0219-9 CrossRefGoogle Scholar
  84. Pimentel D et al (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:01–20CrossRefGoogle Scholar
  85. Piola RF, McDonald JI (2012) Marine biosecurity: the importance of awareness, support and cooperation in managing a successful incursion response. Mar Pollut Bull 64:1766–1773. doi: 10.1016/j.marpolbul.2012.06.004 PubMedCrossRefGoogle Scholar
  86. Precht WF, Hickerson EL, Schmahl GP, Aronson RB (2014) The invasive coral Tubastraea coccinea (Lesson, 1829): implications for natural habitats in the Gulf of Mexico and the Florida Keys. Gulf Mex Sci 32:55–59Google Scholar
  87. Qian P-Y, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234PubMedCrossRefGoogle Scholar
  88. Rezak R, Bright TJ, McGrail D (1985) Reefs and banks of the Northwestern Gulf of Mexico: their geological, biological, and physical dynamics. Wiley, New YorkGoogle Scholar
  89. Riul P, Targino CH, Júnior LAC, Creed JC, Horta PA, Costa GC (2013) Invasive potential of the coral Tubastraea coccinea in the southwest Atlantic. Mar Ecol Prog Ser 480:73–81. doi: 10.3354/meps10200 CrossRefGoogle Scholar
  90. Robinson G (1985) Influence of the 1982-83 El Niño on Galápagos marine life. In: Robinson G, del Pino EM (eds) El Niño en las Islas Galápagos: El evento de 1982-1983. Publication of the Charles Darwin Foundation for the Galápagos Islands, Quito, pp 153–190Google Scholar
  91. Roos PJ (1971) The shallow-water corals of the Netherlands Antilles. Stud Fauna Curaçao Caribb Isls 130:1–50Google Scholar
  92. Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in north America: apparent patterns, processes and biases. Annu Rev Ecol Syst 31:481–531CrossRefGoogle Scholar
  93. Sammarco PW (1982) Polyp bail-out: an escape response to environmental stress and new means of reproduction in corals. Mar Ecol Prog Ser 10:57–65CrossRefGoogle Scholar
  94. Sammarco PW (2014) Determining the geographical distribution and genetic affinities of corals on offshore platforms, Northern Gulf of Mexico US Dept of the Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans. LA OCS Study BOEM 11:75Google Scholar
  95. Sammarco PW, Atchison AD, Boland GS (2004) Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms. Mar Ecol Prog Ser 280:129–143CrossRefGoogle Scholar
  96. Sammarco PW, Porter SA, Cairns SD (2010) A new coral species introduced into the Atlantic Ocean-Tubastraea micranthus (Ehrenberg, 1834) (Cnidaria, Anthozoa, Scleractinia): an invasive threat. Aquat Invasions 5:131–140Google Scholar
  97. Sammarco PW, Atchison AD, Boland GS, Sinclair J, Lirette A (2012a) Geographic expansion of hermatypic and ahermatypic corals in the Gulf of Mexico, and implications for dispersal and recruitment. J Exp Mar Biol Ecol 436:36–49CrossRefGoogle Scholar
  98. Sammarco PW, Brazeau DA, Sinclair J (2012b) Genetic connectivity in scleractinian corals across the northern Gulf of Mexico: oil/gas platforms, and relationship to the Flower Garden Banks. PLoS ONE 7:e30144. doi: 10.1371/journal.pone.0030144 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sammarco PW, Porter SA, Sinclair J, Genazzio M (2013) Depth distribution of a new invasive coral (Gulf of Mexico)–Tubastraea micranthus, comparisons with T. coccinea, and implications for control. Manag Biol Inavsions 4:291–303CrossRefGoogle Scholar
  100. Sammarco PW, Atchison AD, Boland GS (2014a) Coral settlement on oil/gas platforms in the northern Gulf of Mexico: Preliminary evidence of rarity. Gulf Mex Sci 1:11–23Google Scholar
  101. Sammarco PW, Porter SA, Sinclair J, Genazzio M (2014b) Population expansion of a new invasive coral species, Tubastraea micranthus, in the northern Gulf of Mexico. Mar Ecol Prog Ser 495:161–173Google Scholar
  102. Sampaio CLS, Miranda RJ, Maia-Nogueira R, Nunes JCC (2012) New occurrences of the nonindigenous orange cup corals Tubastraea coccinea and T. tagusensis (Scleractinia: Dendrophylliidae) in Southwestern Atlantic. Check List 8:528–530CrossRefGoogle Scholar
  103. Schofield PJ (2010) Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquat Invasions 5:S117–S122CrossRefGoogle Scholar
  104. Schuhmacher H (1984) Reef-building properties of Tubastraea micranthus (Scleractinia, Dendrophylliidae), a coral without zooxanthellae. Mar Ecol Prog Ser 20:93–99CrossRefGoogle Scholar
  105. Shearer TL (2009) Population analysis of an introduced coral species, Tubastraea coccinea, in Florida. In: Pollock NW (ed) Diving for science 2009 proceedings of the American Academy of Underwater Sciences 28th symposium, Dauphin Island, AL, 2009. American Academy of Underwater Sciences, pp 229–236Google Scholar
  106. Silva EC, Barros F (2011) Macrofauna bentônica introduzida no Brasil: lista de espécies marinhas e dulcícolas e distribuição atual. Oecol Aust 15:326–344CrossRefGoogle Scholar
  107. Silva AG, Lima RP, Gomes AN, Fleury BG, Creed JC (2011) Expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis into the Tamoios Ecological Station Marine Protected Area, Brazil. Aquat Invasions 6:S105–S110CrossRefGoogle Scholar
  108. Silva AG, Paula AF, Fleury BG, Creed JC (2014) Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuar Coast Shelf Sci 141:9–16. doi: 10.1016/j.ecss.2014.01.013 CrossRefGoogle Scholar
  109. Thomsen MS, Byers JE, Schiel DR, Bruno JF, Olden JD, Wernberg T, Silliman BR (2014) Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar Ecol Prog Ser 495:39–47CrossRefGoogle Scholar
  110. Vaughan TW (1919) Fossil corals from Central America, Cuba, and Porto Rico: with an account of the American Tertiary, Pleistocene, and recent coral reefs. Bull US Nat Mus 103:189–524Google Scholar
  111. Vaughan TW, Wells JW (1943) Revision of the suborders families, and genera of the scleractinia. Geol Soc Am Spec Pap 44:1–394Google Scholar
  112. Vermeij MJA (2005) A novel growth strategy allows Tubastrea coccinea to escape small-scale adverse conditions and start over again. Coral Reefs 24:442CrossRefGoogle Scholar
  113. Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth and variation in life-history strategy. Coral Reefs 25:59–71. doi: 10.1007/s00338-005-0056-7 CrossRefGoogle Scholar
  114. Wanless R et al (2010) Semi-submersible rigs: a vector transporting entire marine communities around the world. Biol Invasions 12:2573–2583. doi: 10.1007/s10530-009-9666-2 CrossRefGoogle Scholar
  115. Wells JW (1982) Notes on Indo-Pacific Scleractinian Corals. Part 9. New Corals from the Galápagos Islands. Pac Sci 36:211–219Google Scholar
  116. Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtenay WR Jr, Ray GC, Hare JA (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297CrossRefGoogle Scholar
  117. Williams SL, Grosholz ED (2008) The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuaries Coasts 31:3–20CrossRefGoogle Scholar
  118. Yeo DCJ, Ahyong ST, Lodge DM, Ng PKL, Naruse T, Lane DJW (2009) Semisubmersible oil platforms: understudied and potentially major vectors of biofouling-mediated invasions. Biofouling 26:179–186. doi: 10.1080/08927010903402438 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Joel C. Creed
    • 1
  • Douglas Fenner
    • 2
  • Paul Sammarco
    • 3
  • Stephen Cairns
    • 4
  • Kátia Capel
    • 5
  • Andrea O. R. Junqueira
    • 6
  • Igor Cruz
    • 7
  • Ricardo J. Miranda
    • 8
  • Lélis Carlos-Junior
    • 9
  • Marcelo Checoli Mantelatto
    • 9
  • Simone Oigman-Pszczol
    • 10
  1. 1.Laboratório de Ecologia Marinha Bêntica, Departamento de Ecologia, Instituto de Biologia Roberto Alcântara GomesUniversidade do Estado do Rio de JaneiroRio De JaneiroBrazil
  2. 2.Contractor with Ocean AssociatesPago PagoUSA
  3. 3.Louisiana Universities Marine Consortium (LUMCON)ChauvinUSA
  4. 4.Department of Invertebrate ZoologyNational Museum of Natural History, Smithsonian InstitutionWashingtonUSA
  5. 5.Programa de Pós graduação em Biodiversidade e Biologia EvolutivaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  6. 6.Instituto de Biologia. Ilha do FundãoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  7. 7.Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  8. 8.Laboratório de Ecologia Bentônica, Programa de Pós-Graduação em Ecologia e BiomonitoramentoUniversidade Federal da BahiaSalvadorBrazil
  9. 9.Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Biologia Roberto Alcântara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  10. 10.Instituto Brasileiro de Biodiversidade - BrBioRio de JaneiroBrazil

Personalised recommendations