Biological Invasions

, Volume 19, Issue 1, pp 131–146 | Cite as

Consumptive and non-consumptive effects of an invasive marine predator on native coral-reef herbivores

  • Tye L. KindingerEmail author
  • Mark A. Albins
Original Paper


Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.


Predator–prey interactions Non-lethal effects Antipredator behavior Trait-mediated effects Trophic cascade 



We thank our major advisor M. Hixon for his support and guidance, C. Benkwitt, A. Davis, K. Ingeman, K. Page-Albins, E. Pickering, T. Pusack, W. Raymond, G. Scheer, and L. Tuttle for assistance in the field, and the staff members of the Perry Institute for Marine Science for logistical support. A. Adler compiled the list of length-weight conversion parameters used. In addition, C. Benkwitt, A. Davis, S. Green, M. Hixon, K. Ingeman, and L. Tuttle provided constructive reviews of the manuscript. This study was funded by the National Science Foundation (NSF) research grants to M. Hixon (OCE-08-51162 and OCE-12-33027) and NSF Graduate Research Fellowships to both authors.

Supplementary material

10530_2016_1268_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 38 kb)


  1. Albins MA (2013) Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biol Invasions 15:29–43. doi: 10.1007/s10530-012-0266-1 CrossRefGoogle Scholar
  2. Albins MA (2015) Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Mar Ecol Prog Ser 522:231–243. doi: 10.3354/meps11159 CrossRefGoogle Scholar
  3. Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238. doi: 10.3354/meps07620 CrossRefGoogle Scholar
  4. Albins MA, Hixon MA (2013) Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ Biol Fishes 96:1151–1157. doi: 10.1007/s10641-011-9795-1 CrossRefGoogle Scholar
  5. Albins MA, Lyons PJ (2012) Invasive red lionfish Pterois volitans blow directed jets of water at prey fish. Mar Ecol Prog Ser 448:1–5. doi: 10.3354/meps09580 CrossRefGoogle Scholar
  6. Almany GR (2003) Priority effects in coral reef fish communities. Ecology 84:1920–1935. doi: 10.1890/0012-9658 CrossRefGoogle Scholar
  7. Almany GR (2004) Priority effects in coral reef fish communities of the Great Barrier Reef. Ecology 85:2872–2880. doi: 10.1890/03-3166 CrossRefGoogle Scholar
  8. Anton A, Cure K, Layman CA, Puntila R, Simpson MS, Bruno JF (2016) Prey naiveté to invasive lionfish Pterois volitans on Caribbean coral reefs. Mar Ecol Prog Ser 544:257–269CrossRefGoogle Scholar
  9. Banks PB, Dickman CR (2007) Alien predation and the effects of multiple levels of prey naiveté. Trends Ecol Evol 22:229–230. doi: 10.1016/j.tree.2007.02.006 CrossRefPubMedGoogle Scholar
  10. Benkwitt CE (2015) Non-linear effects of invasive lionfish density on native coral-reef fish communities. Biol Invasions 17:1383–1395. doi: 10.1007/s10530-014-0801-3 CrossRefGoogle Scholar
  11. Berger J (2010) Fear-mediated food webs. In: Terborgh J, Estes JA (eds) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, pp 241–254Google Scholar
  12. Black AN, Weimann SR, Imhoff VE, Richter ML, Itzkowitz M (2014) A differential prey response to invasive lionfish, Pterois volitans: prey naiveté and risk-sensitive courtship. J Exp Mar Biol Ecol 460:1–7. doi: 10.1016/j.jembe.2014.06.002 CrossRefGoogle Scholar
  13. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  14. Bourdeau P, Pangle K, Peacor S (2011) The invasive predator Bythotrephes induces changes in the vertical distribution of native copepods in Lake Michigan. Biol Invasions 13:2533–2545. doi: 10.1007/s10530-011-0073-0 CrossRefGoogle Scholar
  15. Brown GE (2003) Learning about danger: chemical alarm cues and local risk assessment in prey fishes. Fish Fish 4:227–234. doi: 10.1046/j.1467-2979.2003.00132.x CrossRefGoogle Scholar
  16. Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363. doi: 10.2307/1942551 CrossRefGoogle Scholar
  17. Ceccarelli DM, Jones GP, McCook LJ (2001) Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. In: Gibson R, Barnes M, Atkinson R (eds) Oceanography and marine biology: an annual review. Taylor and Francis, New York, pp 355–389Google Scholar
  18. Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5:338–352. doi: 10.1080/11956860.1998.11682471 CrossRefGoogle Scholar
  19. Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110. doi: 10.1016/j.tree.2005.01.003 CrossRefPubMedGoogle Scholar
  20. Côté IM, Maljković A (2010) Predation rates of Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 404:219–225. doi: 10.3354/meps08458 CrossRefGoogle Scholar
  21. Côté IM, Green SJ, Hixon MA (2013a) Predatory fish invaders: insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol Conserv 164:50–61. doi: 10.1016/j.biocon.2013.04.014 CrossRefGoogle Scholar
  22. Côté IM, Green SJ, Morris JA Jr, Akins JL, Steinke D (2013b) Diet richness of invasive Indo-Pacific lionfish revealed by DNA barcoding. Mar Ecol Prog Ser 472:249–256. doi: 10.3354/meps09992 CrossRefGoogle Scholar
  23. Cox J, Lima S (2006) Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680. doi: 10.1016/j.tree.2006.07.011 CrossRefPubMedGoogle Scholar
  24. Creel S, Christianson D, Liley S, Winnie JA (2007) Predation risk affects reproductive physiology and demography of elk. Science 315:960. doi: 10.1126/science.1135918 CrossRefPubMedGoogle Scholar
  25. Cucherousset J, Olden JD (2011) Ecological impacts of nonnative freshwater fishes. Fisheries 36:215–230. doi: 10.1080/03632415.2011.574578 CrossRefGoogle Scholar
  26. Cure K, Benkwitt CE, Kindinger TL, Pickering EA, Pusack TJ, McIlwain JL, Hixon MA (2012) Comparative behavior of red lionfish Pterois volitans on native Pacific versus invaded Atlantic coral reefs. Mar Ecol Prog Ser 467:181–192. doi: 10.3354/meps09942 CrossRefGoogle Scholar
  27. Diamond JM, Case TJ (1986) Overview: introductions, extinctions and invasions. In: Diamond JM, Case TJ (eds) Community ecology. Harper and Row, New York, pp 65–79Google Scholar
  28. Dill LM (1974) The escape response of the zebra danio (Brachydanio rerio) I. The stimulus for escape. Anim Behav 22:711–722. doi: 10.1016/S0003-3472(74)80022-9 CrossRefGoogle Scholar
  29. Dill LM (1987) Animal decision making and its ecological consequences: the future of aquatic ecology and behaviour. Can J Zool 65:803–811. doi: 10.1139/z87-128 CrossRefGoogle Scholar
  30. Eaton L, Sloman KA, Wilson RW, Gill AB, Harborne AR (2016) Non-consumptive effects of native and invasive predators on juvenile Caribbean parrotfish. Environ Biol Fishes. doi: 10.1007/s10641-016-0486-9 Google Scholar
  31. Ferrari MC, Wisenden BD, Chivers DP (2010) Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724. doi: 10.1139/Z10-029 CrossRefGoogle Scholar
  32. Freeman AS, Byers JE (2006) Divergent induced responses to an invasive predator in marine mussel populations. Science 313:831–833. doi: 10.1126/science.1125485 CrossRefPubMedGoogle Scholar
  33. Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Change Biol 22:151–163. doi: 10.1111/gcb.13004 CrossRefGoogle Scholar
  34. Gomez-Mestre I, Díaz-Paniagua C (2011) Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proc R Soc Lond B Biol Sci 278:3364–3370. doi: 10.1098/rspb.2010.2762
  35. Green SJ, Côté IM (2009) Record densities of Indo-Pacific lionfish on Bahamian coral reefs. Coral Reefs 28:107. doi: 10.1007/s00338-008-0446-8 CrossRefGoogle Scholar
  36. Green SJ, Akins JL, Côté IM (2011) Foraging behaviour and prey consumption in the Indo-Pacific lionfish on Bahamian coral reefs. Mar Ecol Prog Ser 433:159–167. doi: 10.3354/meps09208 CrossRefGoogle Scholar
  37. Green SJ, Dulvy NK, Brooks AML, Akins JL, Cooper AB, Miller S, Côté IM (2014) Linking removal targets to the ecological effects of invaders: a predictive model and field test. Ecol Appl 24:1311–1322. doi: 10.1890/13-0979.1 CrossRefGoogle Scholar
  38. Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. doi: 10.1016/S0169-5347(01)02358-8 CrossRefGoogle Scholar
  39. Hay ME, Colburn T, Downing D (1983) Spatial and temporal patterns in herbivory on a Caribbean fringing reef: the effects on plant distribution. Oecologia 58:299–308. doi: 10.1007/BF00385227 CrossRefGoogle Scholar
  40. Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27:37–47. doi: 10.1007/s00338-007-0287-x CrossRefGoogle Scholar
  41. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefGoogle Scholar
  42. Itzkowitz M (1977) Social dynamics of mixed-species groups of Jamaican reef fishes. Behav Ecol Sociobiol 2:361–384. doi: 10.1007/BF00299506 CrossRefGoogle Scholar
  43. Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394. doi: 10.1080/11956860.1998.11682468 CrossRefGoogle Scholar
  44. Kindinger TL (2015) Behavioral response of native Atlantic territorial three spot damselfish (Stegastes planifrons) toward invasive Pacific red lionfish (Pterois volitans). Environ Biol Fishes 98:487–498. doi: 10.1007/s10641-014-0279-y CrossRefGoogle Scholar
  45. Kulbicki M, Beets J, Chabanet P, Cure K, Darling E, Floeter S, Galzin R, Green A, Harmelin-Vivien M, Hixon M, Letourneur Y, de Loma T, McClanahan T, McIlwain J, MouTham G, Myers R, O’Leary J, Planes S, Vigliola L, Wantiez L (2012) Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: implications for the Atlantic invasion. Mar Ecol Prog Ser 446:189–205. doi: 10.3354/meps09442 CrossRefGoogle Scholar
  46. Langerhans RB, DeWitt TJ (2002) Plasticity constrained: over-generalized induction cues cause maladaptive phenotypes. Evol Ecol Res 4:857–870Google Scholar
  47. Layman CA, Allgeier JE (2012) Characterizing trophic ecology of generalist consumers: a case study of the invasive lionfish in The Bahamas. Mar Ecol Prog Ser 448:131–141. doi: 10.3354/meps09511 CrossRefGoogle Scholar
  48. Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48:25–34. doi: 10.2307/1313225 CrossRefGoogle Scholar
  49. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. doi: 10.1139/z90-092 CrossRefGoogle Scholar
  50. Lima SL, Steury T (2005) Perception of risk: the foundation of non-lethal predator-prey interactions. In: Barbosa P, Castellanos I (eds) The ecology of predator–prey interactions. Oxford University Press, Oxford, pp 166–188Google Scholar
  51. Lönnstedt OM, McCormick MI (2013) Ultimate predators: lionfish have evolved to circumvent prey risk assessment abilities. PLoS ONE 8:e75781CrossRefPubMedPubMedCentralGoogle Scholar
  52. Madin EM, Gaines SD, Warner RR (2010) Field evidence for pervasive indirect effects of fishing on prey foraging behavior. Ecology 91:3563–3571. doi: 10.1890/09-2174.1 CrossRefPubMedGoogle Scholar
  53. Madin EMP, Madin JS, Booth DJ (2011) Landscape of fear visible from space. Sci Rep 1:14. doi: 10.1038/srep00014 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Marsh-Hunkin KE, Gochfeld D, Slattery M (2013) Antipredator responses to invasive lionfish, Pterois volitans: interspecific differences in cue utilization by two coral reef gobies. Mar Biol 160:1029–1040. doi: 10.1007/s00227-012-2156-6 CrossRefGoogle Scholar
  55. Mathis A, Chivers DP (2003) Overriding the oddity effect in mixed-species aggregations: group choice by armored and nonarmored prey. Behav Ecol 14:334–339. doi: 10.1093/beheco/14.3.334 CrossRefGoogle Scholar
  56. Medina FM, Bonnaud E, Vidal E, Tershy BR, Zavaleta ES, Josh Donlan C, Keitt BS, Corre M, Horwath SV, Nogales M (2011) A global review of the impacts of invasive cats on island endangered vertebrates. Glob Change Biol 17:3503–3510. doi: 10.1111/j.1365-2486.2011.02464.x CrossRefGoogle Scholar
  57. Morris JA Jr, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fishes 86:389–398. doi: 10.1007/s10641-009-9538-8 CrossRefGoogle Scholar
  58. Mumby PJ, Steneck R (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–563. doi: 10.1016/j.tree.2008.06.011 CrossRefPubMedGoogle Scholar
  59. Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN, Buch K, Box S, Stoffle RW, Gill AB (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101. doi: 10.1126/science.1121129 CrossRefPubMedGoogle Scholar
  60. Muñoz R, Currin C, Whitfield P (2011) Diet of invasive lionfish on hard bottom reefs of the Southeast USA: insights from stomach contents and stable isotopes. Mar Ecol Prog Ser 432:181–193. doi: 10.3354/meps09154 CrossRefGoogle Scholar
  61. Murdoch WW, Briggs CJ, Nisbet RM (2013) Consumer-resource dynamics. Princeton University Press, PrincetonGoogle Scholar
  62. Pangle KL, Peacor SD, Johannsson OE (2007) Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88:402–412. doi: 10.1890/06-0768 CrossRefPubMedGoogle Scholar
  63. Paolucci EM, MacIsaac HJ, Ricciardi A (2013) Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Divers Distrib 19:988–995. doi: 10.1111/ddi.12073 CrossRefGoogle Scholar
  64. Peacor SD, Werner EE (1997) Trait-mediated indirect interactions in a simple aquatic food web. Ecology 78:1146–1156. doi: 10.1890/0012-9658 CrossRefGoogle Scholar
  65. Peacor SD, Werner EE (2001) The contribution of trait-mediated indirect effects to the net effects of a predator. Proc Natl Acad Sci 98:3904–3908. doi: 10.1073/pnas.071061998 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pearl CA, Adams MJ, Schuytema GS, Nebeker AV (2003) Behavioral responses of Anuran larvae to chemical cues of native and introduced predators in the Pacific Northwestern United States. J Herpetol 37:572–576. doi: 10.1670/134-02N
  67. Peckarsky BL, Cowan CA, Penton MA, Anderson C (1993) Sublethal consequences of stream-dwelling predatory stoneflies on mayfly growth and fecundity. Ecology 74:1836–1846. doi: 10.2307/1939941 CrossRefGoogle Scholar
  68. Petranka JW, Kats LB, Sih A (1987) Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim Behav 35:420–425. doi: 10.1016/S0003-3472(87)80266-X CrossRefGoogle Scholar
  69. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  70. Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1-118.
  71. Pitt WC, Witmer GW (2007) Invasive predators: a synthesis of the past, present, and future. In: Elewa AM (ed) Predation in organisms. Springer, Heidelberg, pp 265–293CrossRefGoogle Scholar
  72. Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509. doi: 10.1890/04-0719 CrossRefGoogle Scholar
  73. Pringle R (2011) Nile Perch. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, p 484Google Scholar
  74. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  75. Randall JE (1965) Grazing effect on sea grasses by herbivorous reef fishes in the West Indies. Ecology 46:255–260. doi: 10.2307/1936328 CrossRefGoogle Scholar
  76. Ruiz GM, Fofonoff P, Hines A, Grosholz ED (1999) Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnol Oceanogr 44:950CrossRefGoogle Scholar
  77. Ruxton GD, Lima SL (1997) Predator–induced breeding suppression and its consequences for predator–prey population dynamics. Proc R Soc Lond B Biol Sci 264:409–415. doi: 10.1098/rspb.1997.0058 CrossRefGoogle Scholar
  78. Salo P, Korpimäki E, Banks PB, Nordström M, Dickman CR (2007) Alien predators are more dangerous than native predators to prey populations. Proc R Soc B Biol Sci 274:1237–1243. doi: 10.1098/rspb.2006.0444 CrossRefGoogle Scholar
  79. Schofield PJ (2009) Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea. Aquat Invasions 4:473–479. doi: 10.3391/ai.2009.4.3.5 CrossRefGoogle Scholar
  80. Schofield P (2010) Update on geographic spread of invasive lionfishes (Pterois volitans [Linnaeus, 1758] and P. miles [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquat Invasions 5:S117–S122. doi: 10.3391/ai.2010.5.S1.024 CrossRefGoogle Scholar
  81. Shulman MJ (2015) Priority effects. In: Mora C (ed) Ecology of fishes on coral reefs. Cambridge University Press, Cambridge, pp 242–246CrossRefGoogle Scholar
  82. Shulman MJ, Ogden JC, Ebersole JP, McFarland WN, Miller SL, Wolf NG (1983) Priority effects in the recruitment of juvenile coral reef fishes. Ecology 64:1508–1513. doi: 10.2307/1937505 CrossRefGoogle Scholar
  83. Sih A (1986) Antipredator responses and the perception of danger by mosquito larvae. Ecology 67:434–441. doi: 10.2307/1938587 CrossRefGoogle Scholar
  84. Sih A, Wooster DE (1994) Prey behavior, prey dispersal, and predator impacts on stream prey. Ecology 75:1199–1207. doi: 10.2307/1937446 CrossRefGoogle Scholar
  85. Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K (1985) Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst 16:269–311.
  86. Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR (2010) Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621. doi: 10.1111/j.1600-0706.2009.18039.x CrossRefGoogle Scholar
  87. Smith GR, Burgett AA, Temple KG, Sparks KA, Winter KE (2008) The ability of three species of tadpoles to differentiate among potential fish predators. Ethology 114:701–710. doi: 10.1111/j.1439-0310.2008.01505.x
  88. Snyder WE, Evans EW (2006) Ecological effects of invasive arthropod generalist predators. Annu Rev Ecol Evol Syst 37:95–122CrossRefGoogle Scholar
  89. Steneck RS (1994) Is herbivore loss more damaging to reefs than hurricanes? Case studies from two Caribbean reef systems 1978–1988:220–226Google Scholar
  90. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651.
  91. Sutherland WJ, Clout M, Côté IM, Daszak P, Depledge MH, Fellman L, Fleishman E, Garthwaite R, Gibbons DW, De Lurio J, Impey AJ, Lickorish F, Lindenmayer D, Madgwick J, Margerison C, Maynard T, Peck LS, Pretty J, Prior S, Redford KH, Scharlemann JPW, Spalding M, Watkinson AR (2010) A horizon scan of global conservation issues for 2010. Trends Ecol Evol 25:1–7. doi: 10.1016/j.tree.2009.10.003 CrossRefPubMedGoogle Scholar
  92. Taylor RJ (1984) Predation. Chapman and Hall, LondonCrossRefGoogle Scholar
  93. Woinarski JC, Burbidge AA, Harrison PL (2015) Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc Natl Acad Sci 112:4531–4540. doi: 10.1073/pnas.1417301112 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zuur A, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer Science & Business Media, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Integrative BiologyOregon State UniversityCorvallisUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzUSA
  3. 3.Department of Marine SciencesUniversity of South Alabama, Dauphin Island Sea LabDauphin IslandUSA

Personalised recommendations