Biological Invasions

, Volume 18, Issue 12, pp 3665–3679 | Cite as

Monitoring and distribution modelling of invasive species along riverine habitats at very high resolution

  • Patrice Descombes
  • Blaise Petitpierre
  • Eric Morard
  • Michael Berthoud
  • Antoine Guisan
  • Pascal Vittoz
Original Paper


Monitoring and species distribution models (SDMs) are increasingly used to support conservation planning but are rarely projected at a very high resolution for conservation management. In this study, we compared the population distribution and size of five invasive plant species along an 18 km alluvial system in Switzerland, over a period of 11 years. Exhaustive inventories of past (2001) to current (2012) populations showed a massive increase in invaded areas over the eleven years. Impatiens glandulifera and Reynoutria japonica were the species with the largest increases in population number and size. The ecological preferences of each species were then modelled at 1 m resolution, using environmental variables expressing topography, disturbances, dispersal, soil texture and light availability. SDMs successfully depicted the niches at very high resolution. Some of the important predictors (e.g., canopy density, distance to river) would have been unhelpful at a coarser resolution. From these very-high-resolution models, we predicted the potential distribution and abundance of species and derived two indices indicating the amount of habitat still available for future species colonisation, crucial information for management. Large, empty areas were predicted to be suitable for each species, suggesting that the observed increase in population size may continue in the future. The two proposed range-filling indices and abundance models may be used efficiently in future studies at very fine resolution to prioritise eradication efforts in previously invaded areas and controls in areas at high risk of invasion. To our knowledge, this is the first study investigating the efficiency of SDMs to predict invasions at such a fine resolution.


Buddleja davidii Ecological niche modelling Fine resolution Floodplain Helianthus tuberosus Impatiens glandulifera Population size Prunus laurocerasus Reynoutria japonica Species distribution models Switzerland 

Supplementary material

10530_2016_1257_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 (DOCX 3682 kb)
10530_2016_1257_MOESM2_ESM.xlsx (117 kb)
Supplementary material 2 (XLSX 116 kb)


  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  2. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefPubMedGoogle Scholar
  3. Barney JN, Tharayil N, DiTommaso A, Bhowmik PC (2006) The biology of invasive alien plants in Canada. 5. Polygonum cuspidatum Sieb. & Zucc. [= Fallopia japonica (Houtt.) Ronse Decr.]. Can J Plant Sci 86:887–905CrossRefGoogle Scholar
  4. Bimova K, Mandak B, Kasparova I (2004) How does Reynoutria invasion fit the various theories of invasibility? J Veg Sci 15:495–504Google Scholar
  5. Bio AM, De Becker P, De Bie E et al (2002) Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions. Biodivers Conserv 11:2189–2216CrossRefGoogle Scholar
  6. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource selection functions. Ecol Modell 157:281–300. doi:10.1016/S0304-3800(02)00200-4 CrossRefGoogle Scholar
  7. Bradley BA (2013) Distribution models of invasive plants over-estimate potential impact. Biol Invasions 15:1417–1429CrossRefGoogle Scholar
  8. Burkart M (2001) River corridor plants (Stromtalpflanzen) in central European lowland: a review of a poorly understood plant distribution pattern. Glob Ecol Biogeogr 10:449–468CrossRefGoogle Scholar
  9. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  10. Dolédec S, Chessel D (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique. I: description d’un plan d’observation complet par projection de variables. Acta Oecol 8:403–426Google Scholar
  11. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  12. Dubuis A, Giovanettina S, Pellissier L et al (2013) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci 24:593–606CrossRefGoogle Scholar
  13. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523CrossRefGoogle Scholar
  14. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813CrossRefPubMedGoogle Scholar
  15. Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  16. Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274CrossRefGoogle Scholar
  17. Eschtruth AK, Battles JJ (2009) Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecol Monogr 79:265–280CrossRefGoogle Scholar
  18. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  19. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28:337–407CrossRefGoogle Scholar
  20. Gallien L, Douzet R, Pratte S et al (2012) Invasive species distribution models–how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136CrossRefGoogle Scholar
  21. Growns I, Rourke M, Gilligan D (2013) Toward river health assessment using species distributional modeling. Ecol Indic 29:138–144CrossRefGoogle Scholar
  22. Guillera-Arroita G, Hauser CE, Mccarthy MA (2014) Optimal surveillance strategy for invasive species management when surveys stop after detection. Ecol Evol 4:1751–1760CrossRefPubMedPubMedCentralGoogle Scholar
  23. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  24. Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heinänen S, Erola J, Von Numers M (2012) High resolution species distribution models of two nesting water bird species: a study of transferability and predictive performance. Landsc Ecol 27:545–555CrossRefGoogle Scholar
  26. Hijmans RJ, Phillips S, Leathwick J, Elith J (2011) Dismo: Species distribution modeling. R package version 0.7– 17.
  27. Hirzel AH, Le Lay G, Helfer V et al (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Modell 199:142–152CrossRefGoogle Scholar
  28. Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193CrossRefGoogle Scholar
  29. Kasperek G (2004) Fluctuations in numbers of neophytes, especially Impatiens glandulifera, in permanent plots in a west German floodplain during 13 years. NEOBIOTA 3:27–37Google Scholar
  30. Keller CA, Hill M, Vollmer MK et al (2012) European emissions of halogenated greenhouse gases inferred from atmospheric measurements. Environ Sci Technol 46:217–225CrossRefPubMedGoogle Scholar
  31. Koop AL, Fowler L, Newton LP, Caton BP (2012) Development and validation of a weed screening tool for the United States. Biol Invasions 14:273–294CrossRefGoogle Scholar
  32. Kremen C, Cameron A, Moilanen A et al (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science (80-) 320:222–226CrossRefGoogle Scholar
  33. Kulhanek SA, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl 21:203–213CrossRefPubMedGoogle Scholar
  34. Lachat T, Pauli D, Gonseth Y et al (2010) Wandel der Biodiversität in der Schweiz seit 1990, Ist die Talsohle erreicht?. Haupt Verl, BerneGoogle Scholar
  35. Lahoz-Monfort JJ, Guillera-Arroita G, Wintle BA (2014) Imperfect detection impacts the performance of species distribution models. Glob Ecol Biogeogr 23:504–515CrossRefGoogle Scholar
  36. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226CrossRefGoogle Scholar
  37. Landolt E, Bäumler B, Erhardt A, et al. (2010) Flora Indicativa. Ecological indicator values and biological attributes of the Flora of Switzerland and the Alps, Haupt Verl. BerneGoogle Scholar
  38. Leung B, Lodge DM, Finnoff D et al (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc 269:2407–2413CrossRefGoogle Scholar
  39. Maskell LC, Bullock JM, Smart SM et al (2006) The distribution and habitat associations of non-native plant species in urban riparian habitats. J Veg Sci 17:499–508CrossRefGoogle Scholar
  40. McCarthy MA, Moore JL, Morris WK et al (2013) The influence of abundance on detectability. Oikos 122:717–726CrossRefGoogle Scholar
  41. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  42. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop) 36:1058–1069CrossRefGoogle Scholar
  43. Miller NP, Matlack GR (2010) Population expansion in an invasive grass, Microstegium vimineum: a test of the channelled diffusion model. Divers Distrib 16:816–826CrossRefGoogle Scholar
  44. Morard E (2001) Cartographie et état actuel de quatre plantes potentiellement invasives le long de la Venoge. Master report, University of Lausanne (Unpublished)Google Scholar
  45. Perrins J, Fitter A, Williamson M (1993) Population biology and rates of invasion of three introduced Impatiens species in the British Isles. J Biogeogr 20:33–44CrossRefGoogle Scholar
  46. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259CrossRefGoogle Scholar
  47. Pysek P, Hulme PE (2005) Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience 12:302–315CrossRefGoogle Scholar
  48. Pysek P, Prach K (1993) Plant invasions and the role of riparian habitats: a comparison of four species alien to central Europe. J Biogeogr 20:413–420CrossRefGoogle Scholar
  49. Pysek P, Chytry M, Pergl J et al (2012) Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia 84:575–629Google Scholar
  50. R Development Core Team (2011) R: a Language and Environment for Statistical Computing. The R Foundation for Statistical Computing, ViennaGoogle Scholar
  51. Renöfält BM, Jansson R, Nilsson C (2005) Spatial patterns of plant invasiveness in a riparian corridor. Landsc Ecol 20:165–176CrossRefGoogle Scholar
  52. Ricciardi A (2003) Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshw Biol 48:972–981CrossRefGoogle Scholar
  53. Richardson DM, Allsopp N, D’Antonio CM et al (2000) Plant invasions—the role of mutualisms. Biol Rev Camb Philos Soc 75:65–93CrossRefPubMedGoogle Scholar
  54. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181Google Scholar
  55. Seo C, Thorne JH, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5:39–43CrossRefPubMedGoogle Scholar
  56. Swanton CJ, Cavers PB, Clements DR, Moore MJ (1992) The biology of Canadian weeds. 101. Helianthus tuberosus L. Can J Plant Sci 72:1367–1382CrossRefGoogle Scholar
  57. Tallent-Halsell NG, Watt MS (2009) The invasive Buddleja davidii (Butterfly bush). Bot Rev 75:292–325CrossRefGoogle Scholar
  58. Thuiller W, Richardson DM, Pysek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250CrossRefGoogle Scholar
  59. Thuiller W, Lafourcade B, Araujo M (2010) Presentation manual for BIOMOD. University Joseph Fourier, Laboratoire d’écologie Alpine, GrenobleGoogle Scholar
  60. Tickner DP, Angold PG, Gurnell AM, Mountford JO (2001) Riparian plant invasions: hydrogeomorphological control and ecological impacts. Prog Phys Geogr 25:22–52CrossRefGoogle Scholar
  61. Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Modell 220:3248–3258CrossRefGoogle Scholar
  62. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  63. Vicente J, Randin CF, Gonçalves J et al (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13:1209–1227CrossRefGoogle Scholar
  64. Von Blotzheim UNG (1988) Handbuch der Vögel Mitteleuropas Band 11/II. AULA-Verlag, WiesbadenGoogle Scholar
  65. Walther G, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  66. Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47:517–539CrossRefGoogle Scholar
  67. Wyse DL, Young FL, Jones RJ (1986) Influence of Jerusalem Artichoke (Helianthus tuberosus) density and duration of interference on soybean (Glycine max) growth and yield. Weed Sci 34:243–247Google Scholar
  68. Zweig MH, Campbell G (1993) Receiver-operating Characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Patrice Descombes
    • 1
    • 2
    • 3
  • Blaise Petitpierre
    • 1
  • Eric Morard
    • 4
  • Michael Berthoud
    • 5
  • Antoine Guisan
    • 1
    • 5
  • Pascal Vittoz
    • 1
    • 5
  1. 1.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  2. 2.Landscape Ecology, Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
  3. 3.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  4. 4.BEB SAAigleSwitzerland
  5. 5.Institute of Earth Surface DynamicsUniversity of LausanneLausanneSwitzerland

Personalised recommendations