Biological Invasions

, Volume 18, Issue 12, pp 3647–3663 | Cite as

Analysis of the invasiveness of spotted wing Drosophila (Drosophila suzukii) in North America, Europe, and the Mediterranean Basin

  • Andrew Paul Gutierrez
  • Luigi Ponti
  • Daniel T. Dalton
Original Paper


The polyphagous Asian vinegar fly Drosophila suzukii (spotted wing Drosophila) is a native of Eastern and Southeastern Asia. It emerged as an important invasive insect pest of berries and stone fruits in the Americas and Europe beginning in 2008. Species distribution models are commonly used for analyzing the extant and potential range expansion of invasive species. Previous modeling efforts for D. suzukii include a degree-day model, a MaxEnt ecological niche model, a demographic model incorporating the effects of temperature, and a preliminary mechanistic physiologically-based demographic model (PBDM). In the present analysis, we refine the PBDM for D. suzukii based on biological data reported in the literature. The PBDM is used to assess the effects of temperature and relative humidity from a recently published global climate dataset (AgMERRA) on the prospective geographic distribution and relative abundance of the pest in the USA and Mexico, and in Europe and the Mediterranean Basin. Our focus is on areas of recent invasion and of predicted higher invasiveness in these areas. Although the species is native to Asia and is of putative temperate origins, it has established in subtropical to north temperate zones worldwide where it infests a wide range of wild and domesticated berries and stone fruits. The model captures the observed phenology of D. suzukii at specific locations, as well as the potential geographic distribution and relative favorability across larger regions. The main limiting factor is cold winter temperature in northern areas, though high temperatures and low relative humidity may be limiting in arid areas. The effect of greater cold tolerance in winter morph adults is explored.


Invasive species Geographic information systems (GIS) Distribution Abundance Physiologically based demographic models (PBDMs) 



We (A.P.G. and L.P.) wish to thank Dr. Patricia Gibert and C. Plantamp for providing developmental data initially reported in Asplen et al. (2015). We are grateful to Dr. Markus Neteler of mundialis GmbH & Co. KG and the international network of co-developers for maintaining the Geographic Resources Analysis Support System (GRASS) software, and making it available to the scientific community. Funding for the modeling/GIS analysis was provided by the Center for the Analysis of Sustainable Agricultural Sytems (CASAS) and Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA), Rome Italy. The experimental work on D. suzukii was supported at Oregon State University by the US Department of Agriculture National Institute of Food and Agriculture (USDA-NIFA) award #2010-51181-21167, the Oregon Blueberry Commission, and the Northwest Center for Small Fruit Research, and the Agricultural Research Foundation.

Author contributions

A.P.G. and L.P. conceived and developed the PBDM/GIS system. D.D. developed field and laboratory data used in the analysis. All authors read and approved the manuscript.

Supplementary material

10530_2016_1255_MOESM1_ESM.docx (952 kb)
Supplementary material 1 (DOCX 951 kb)


  1. Adrion JR, Kousathanas A, Pascual M, Burrack HJ, Haddad NM, Bergland AO, Machado H, Sackton TB, Schlenke TA, Watada M, Wegmann D, Singh ND (2014) Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. Mol Biol Evol 31:3148–3163. doi: 10.1093/molbev/msu246 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchinson WD, Isaacs R, Jiang Z-L, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalà L, Desneux N (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494. doi: 10.1007/s10340-015-0681-z CrossRefGoogle Scholar
  3. Bieri M, Baumgärtner J, Bianchi G, Delucchi V, Von Arx R (1983) Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and pea varieties. Mitt Schweiz Ent Ges 56:163–171Google Scholar
  4. Brière JF, Pracros P, Le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29CrossRefGoogle Scholar
  5. CERIS, Center for Environmental and Regulatory Information Systems (2015) Survey status of spotted wing Drosophila—Drosophila suzukii. Accessed 15 Oct 2015
  6. Chabert S, Allemand R, Poyet M, Ris N, Gibert P (2013) Drosophila suzukii, vers une lutte biologique contre ce ravageur des fruits rouges. Phytoma 660:34–38Google Scholar
  7. Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566CrossRefGoogle Scholar
  8. Coop L (2010) Online phenology and degree-day model for agricultural and decision-making in the US. Integrated Plant Protection Center, Botany & Plant Pathology Dept. Oregon State University, Corvallis, Oregon.
  9. Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R (2011) Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci 67:368–1374CrossRefGoogle Scholar
  10. Damus M (2009) Some preliminary results from Climex and Maxent distribution modeling of Drosophila suzukii. Version 2. CFIA Plant Health Risk Assessment, Ottawa, Canada. Accessed 28 Oct 2015
  11. David JR, Clavel MF (1965) Interaction entre le génotype et le milieu d’élevage. Conséquences sur les caractéristiques du développement de la Drosophile. Bull Biol Fr Bel 99:369–378Google Scholar
  12. DiCola G, Gilioli G, Baumgärtner J (1999) Mathematical models for age-structured population dynamics. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology, 2nd edn. Wiley, New York, pp 503–534Google Scholar
  13. Dingle H (1972) Migration strategies of insects. Science 175:1327–1334CrossRefPubMedGoogle Scholar
  14. Emiljanowicz LM, Ryan GD, Langille A, Newman J (2014) Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ Entomol 107(4):1392–1398CrossRefPubMedGoogle Scholar
  15. Gilioli G, Pasquali S, Marchesini E (2016) A modelling framework for pest population dynamics and management: an application to the grape berry moth. Ecol Model 320:348–357. doi: 10.1016/j.ecolmodel.2015.10.018 CrossRefGoogle Scholar
  16. GRASS Development Team (2014) Geographic Resources Analysis Support System (GRASS) software, version 6.4.4. Open Source Geospatial Foundation.
  17. Gutierrez AP (1996) Applied population ecology: a supply-demand approach. Wiley, New York, p 300Google Scholar
  18. Gutierrez AP, Baumgärtner JU (1984) Multitrophic level models of predator–prey energetics: II. A realistic model of plant–herbivore–parasitoid–predator interactions. Can Entomol 116:933–949CrossRefGoogle Scholar
  19. Gutierrez AP, Ponti L (2013) Eradication of invasive species: why the biology matters. Environ Entomol 42:395–411. doi: 10.1603/EN12018 CrossRefPubMedGoogle Scholar
  20. Gutierrez AP, Ponti L (2014) The new world screwworm: prospective distribution and role of weather in eradication. Agric For Entomol 16:158–173CrossRefGoogle Scholar
  21. Gutierrez AP, Havenstein DE, Nix HA, Moore PA (1974) The ecology of Aphis craccivora Koch and subterranean clover stunt virus. III. A regional perspective of the phenology and migration of the cowpea aphid. J Appl Ecol 11:21–35CrossRefGoogle Scholar
  22. Gutierrez AP, Ponti L, Gilioli G (2010) Climate change effects on plant–pest–natural enemy interactions. In: Hillel D, Rosenzweig C (eds) Handbook of climate change and agroecosystems: impact, adaptation and mitigation. Imperial College Press, LondonGoogle Scholar
  23. Gutierrez AP, Ponti L, Gilioli G (2014) Comments on the concept of ultra-low cryptic tropical fruit fly populations. Proc R Soc B Biol Sci 281:20132825CrossRefGoogle Scholar
  24. Hamby KA, Bellamy DE, Chiu JC, Lee JC, Walton VM, Wiman NG, York RM, Biondi A (2016) Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J Pest Sci. doi: 10.1007/s10340-016-0756-5 Google Scholar
  25. Harris DW, Hamby KA, Wilson HE, Zalom FG (2014) Seasonal monitoring of Drosophila suzukii (Diptera: Drosophilidae) in a mixed fruit production system. J Asia-Pac Entomol 17:857–864CrossRefGoogle Scholar
  26. IPCC (2014) Reports ‘Impacts, Adaptation and Vulnerability’, fourth and fifth assessment reports of the intergovernmental panel on climate change.
  27. Izquierdo JI (1991) How does Drosophila melanogaster overwinter? Entomol Exp Appl 59:51–58CrossRefGoogle Scholar
  28. Jakobs R, Gariepy TD, Sinclair BJ (2015) Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J Insect Physiol 79:1–9CrossRefPubMedGoogle Scholar
  29. Jaramillo SL, Mehlferber E, Moore PJ (2015) Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol Entomol 40:2–9. doi: 10.1111/phen.12082 CrossRefGoogle Scholar
  30. Kaçar G, Wang X, Stewart TJ, Daane KM (2015) Overwintering survival of Drosophila suzukii (Diptera: Drosophilidae) and the effect of food on adult survival in California’s San Joaquin Valley. Environ Entomol. doi: 10.1093/ee/nvv182 PubMedGoogle Scholar
  31. Kaneshiro KY (1983) Drosophila (Sophophora) suzukii (Matsumura). Proc Hawaii Entomol Soc 24:179Google Scholar
  32. Kanzawa T (1939) Studies on Drosophila suzukii Mats. Rev Appl Entomol 29:622 (abstract) Google Scholar
  33. Kenis M, Tonina L, Eschen R, van der Sluis B, Sancassani M, Mori N, Haye T, Helsen H (2016) Non-crop plants used as hosts by Drosophila suzukii in Europe. J Pest Sci. doi: 10.1007/s10340-016-0755-6 Google Scholar
  34. Kimura M (2004) Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140:442–449CrossRefPubMedGoogle Scholar
  35. Kinjo H, Kunimi Y, Nakai M (2014) Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 49:297–304CrossRefGoogle Scholar
  36. Klick J, Yang WQ, Walton VM, Dalton DT, Hagler JR, Dreves AJ, Lee JC, Bruck DJ (2015) Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. J Appl Entomol 140:37–46. doi: 10.1111/jen.12234 CrossRefGoogle Scholar
  37. Langille AB, Arteca EM, Ryan GD, Emiljanowicz LM, Newman JA (2016) North American invasion of Spotted-Wing Drosophila (Drosophila suzukii): a mechanistic model of population dynamics. Ecol Model. doi: 10.1016/j.ecolmodel.2016.05.014 Google Scholar
  38. Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Bruck DJ (2015) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Amer 108(2):117–129. doi: 10.1093/aesa/sau014 CrossRefGoogle Scholar
  39. Manetsch TJ (1976) Time-varying distributed delays and their use in aggregate models of large systems. IEEE Trans Syst Man Cybern 6:547–553CrossRefGoogle Scholar
  40. Metz M, Rocchini D, Neteler M (2014) Surface temperatures at the continental scale: tracking changes with remote sensing at unprecedented detail. Remote Sens 6:3822–3840. doi: 10.3390/rs6053822 CrossRefGoogle Scholar
  41. NASA (National Aeronautics and Space Administration) (2015) AgMERRA and AgCFSR climate forcing datasets for agricultural modeling. Goddard Institute for Space Studies. Accessed 28 Oct 2015
  42. Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757. doi: 10.1093/gbe/evt034 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pelton E, Gratton C, Isaacs R, Van Timmeren S, Blanton A, Guédot C (2016) Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected. J Pest Sci. doi: 10.1007/s10340-016-0733-z Google Scholar
  44. Plantamp C, Salort K, Gibert P, Dumet A, Mialdea G, Mondy N, Voituron Y (2016) All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold. J Insect Physiol 89:28–36. doi: 10.1016/j.jinsphys.2016.03.009 CrossRefPubMedGoogle Scholar
  45. Ponti L, Gilioli G, Biondi A, Desneux N, Gutierrez AP (2015a) Physiologically based demographic models streamline identification and collection of data in evidence-based pest risk assessment. EPPO Bull 45:317–322. doi: 10.1111/epp.12224 CrossRefGoogle Scholar
  46. Ponti L, Gutierrez AP, Altieri MA (2015b) Holistic approach in invasive species research: the case of the tomato leaf miner in the Mediterranean Basin. Agroecol Sust Food Syst 39:436–468. doi: 10.1080/21683565.2014.990074 CrossRefGoogle Scholar
  47. Potter KA, Arthur Woods H, Pincebourde S (2013) Microclimatic challenges in global change biology. Glob Change Biol 19(10):2932–2939CrossRefGoogle Scholar
  48. Poyet M, Le Roux V, Gibert P, Meirland A, Prévost G, Eslin P, Chabrerie O (2015) The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe? PLoS One 10:e0142785. doi: 10.1371/journal.pone.0142785 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ruane AC, Goldberg R, Chryssanthacopoulos J (2015) Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric For Meteorol 200:233–248. doi: 10.1016/j.agrformet.2014.09.016 CrossRefGoogle Scholar
  50. Ryan GD, Emiljanowicz L, Wilkinson F, Kornya M, Newman JA (2016) Thermal tolerances of the spotted-wing Drosophila Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol. doi: 10.1093/jee/tow006 PubMedGoogle Scholar
  51. Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol 16:11. doi: 10.1186/s12898-016-0070-3 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Stephens AR, Asplen MK, Hutchison WD, Venette RC (2015) Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environ Entomol 44:1619–1626. doi: 10.1093/ee/nvv134 CrossRefPubMedGoogle Scholar
  53. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  54. Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43(2):501–510. doi: 10.1603/EN13200 CrossRefPubMedGoogle Scholar
  55. Tochen S, Woltz JM, Dalton DT, Lee JC, Wiman NG, Walton VM (2015) Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J Appl Entomol 140:47–57. doi: 10.1111/jen12247 CrossRefGoogle Scholar
  56. Tominski C, Fuchs G, Schumann H (2008) Task-driven color coding. Information visualisation, IV’08 12th international conference, London, UK, pp 373–380. doi: 10.1109/IV.2008.24
  57. Toxopeus J, Jakobs R, Ferguson LV, Gariepy TD, Sinclair BJ (2016) Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. J Insect Physiol 89:37–51. doi: 10.1016/j.jinsphys.2016.03.006 CrossRefPubMedGoogle Scholar
  58. Vansickle J (1977) Attrition in distributed delay models. IEEE Trans Syst Man Cybern 7:635–638CrossRefGoogle Scholar
  59. Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2(1):1–7. doi: 10.1603/IPM10010 CrossRefGoogle Scholar
  60. Wang X-G, Stewart TJ, Biondi A, Chavez BA, Ingels C, Caprile J, Grant JA, Walton VM, Daane KM (2016) Population dynamics and ecology of Drosophila suzukii in Central California. J Pest Sci. doi: 10.1007/s10340-016-0747-6 Google Scholar
  61. Wiman NG, Walton VM, Dalton DT, Anfora G, Burrack HJ, Chiu JC, Daane KM, Grassi A, Ioriatti C, Miller B, Tochen S, Wang X, Ioriatti C (2014) Integrating temperature—dependent life table data into a matrix projection model for Drosophila suzukii population estimation. PLoS One 9(9):e106909CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Stacconi MVR, Shearer PW, Tanigoshi L, Wang X, Walton VM (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci. doi: 10.1007/s10340-016-0757-4 Google Scholar
  63. Zerulla FN, Schmidt S, Streitberger M, Zebitz CPW, Zelger R (2015) On the overwintering ability of Drosophila suzukii in South Tyrol. J Berry Res 5:41–48. doi: 10.3233/JBR-150089 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for the Analysis of Sustainable Agricultural Systems (CASAS Global)KensingtonUSA
  2. 2.Division of Ecosystem Science, College of Natural ResourcesUniversity of CaliforniaBerkeleyUSA
  3. 3.Centro Ricerche CasacciaAgenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (ENEA)RomeItaly
  4. 4.Department of HorticultureOregon State UniversityCorvallisUSA

Personalised recommendations