Advertisement

Biological Invasions

, Volume 18, Issue 11, pp 3265–3275 | Cite as

Invasive tall annual willowherb (Epilobium brachycarpum C. Presl) in Central Europe originates from high mountain areas of western North America

  • Kai Uwe Nierbauer
  • Juraj Paule
  • Georg Zizka
Original Paper

Abstract

Identification of the source population of biological invasions has important consequences for the effective control and management of the invader. Tall annual willowherb (Epilobium brachycarpum) is a relatively recent and rapidly spreading neophyte in Europe that was first detected in 1978. Populations of tall annual willowherb from Germany and northern France were analysed by AFLP fingerprinting together with samples from five different localities in its native range in western North America. Three genetically different groups were found corresponding to different altitude zones in the native range. The FST is high among all samples indicating a strong genetical separation of the three groups. Invasive populations showed much lower genetic diversity than the native population. Additionally invasive populations revealed genetic affinities to North American specimens originating particularly from high mountain areas. The two large German populations and the population from northern France are genetically distinct while the individuals within the populations are genetically uniform. This suggests multiple introduction events rather than one introduction with consequent spreading across Europe. A third small German population from Treis-Karden in the Mosel valley clusters with North American lowland populations but suffers from frost damage and its permanent establishment is doubtful.

Keywords

Neophyte AFLP Fingerprinting Genetic diversity Introduction Source identification 

Notes

Acknowledgments

Funding for this project was provided by Senckenberg internal research funds. We are grateful to Barbara Ertter (University and Jepson Herbaria, Berkeley) and Roswitha Schmickl (Institute of Botany ASCR, Prague) for donating herbarium specimens of E. brachycarpum from the native range. Further thanks go to the staff of the Grunelius-Möllgaard Laboratory (Senckenberg Research Institute and Natural History Museum, Frankfurt am Main) for lab support and to the Wissenschaftsgarten of the Goethe University for cultivation of plant material. We thank Diana Bowler (Senckenberg BiK-F, Frankfurt am Main) for checking the English of the final manuscript.

References

  1. Adams K (2010) Panicled willowherb Epilobium brachycarpum C. Presl new to the British Isles. Essex Nat 27:52–54Google Scholar
  2. Anonymous (2015) Klima Cochem—Station Bernkastel-Kues (120 m). http://www.wetterdienst.de/Deutschlandwetter/Cochem/Klima/. Accessed 26 Apr 2016
  3. Arroyo MTK, Muñoz MS, Henríques C, Till-Bottraut I, Pérez F (2006) Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecol 30:248–257CrossRefGoogle Scholar
  4. Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321PubMedPubMedCentralGoogle Scholar
  5. Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–349CrossRefGoogle Scholar
  6. Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889Google Scholar
  7. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758CrossRefPubMedGoogle Scholar
  8. Brummitt RK (1984) Report of the committee for Spermatophyta: 27. Taxon 33:297–301. doi: 10.2307/1221174 CrossRefGoogle Scholar
  9. Bzdęga K, Janiak A, Tarlowska S, Kurowska M, Tokarska-Guzik B, Szarejko I (2012) Unexpected genetic diversity of Fallopia japonica from Central Europe revealed after AFLP analysis. Flora 207:636–645CrossRefGoogle Scholar
  10. Chun YJ, Nason JD, Moloney KA (2009) Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae). Mol Ecol 18:3020–3035CrossRefPubMedGoogle Scholar
  11. Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357CrossRefGoogle Scholar
  12. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. doi: 10.1038/nprot.2007.310 CrossRefPubMedGoogle Scholar
  13. Doyle J, Doyle JL (1987) Genomic plant DNA preparation from Fresh tissue—the CTAB method. Phytochem Bull 19:11Google Scholar
  14. Durka W, Bossdorf O, Prati D, Auge H (2005) Molecular evidence of multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol Ecol 14:1697–1706CrossRefPubMedGoogle Scholar
  15. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604CrossRefGoogle Scholar
  16. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050CrossRefPubMedPubMedCentralGoogle Scholar
  17. Essl F, Nehring S, Klingenstein F, Milasowszky N, Novack C, Rabitsch W (2011) Review of risk assessment systems of IAS in Europe introducing the German–Austrian Black List Information System (GABLIS). J Nat Conserv 19:339–350CrossRefGoogle Scholar
  18. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  19. Gladieux P, Giraud T, Kiss L, Genton BJ, Jonot O, Shykoff JA (2010) Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol Invasions 13:933–944CrossRefGoogle Scholar
  20. Gregor T, Bönsel D, Starke-Ottich I, Tackenberg O, Wittig R, Zizka G (2013) Epilobium brachycarpum: a fast-spreading neophyte in Germany. Tuexenia 33:259–283Google Scholar
  21. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  22. Hitchcock CL, Cronquist A, Ownbey M, Thompson JW (1961) Vascular plants of the Pacific Northwest. Part 3: Saxifragaceae to Ericaceae. University of Washington, Seattle, p 614Google Scholar
  23. Hoch PC, Raven PH (1981) Proposal to reject the name Epilobium brachycarpum Presl (1831) (Onagraceae). Taxon 30:666. doi: 10.2307/1219961 CrossRefGoogle Scholar
  24. Höcker R, Hetzel G (2007) Epilobium brachycarpum C. Presl, das Kurzfrüchtige Weidenröschen in Bayern. Flor Rundbr 40:115–130Google Scholar
  25. Izco J (1983) Epilobium paniculatum nueva adventicia para Europa. Candollea 38:309–316Google Scholar
  26. Johansen DA (1929) New chromosome numbers in the Onagraceae. Am J Bot 16:595–597CrossRefGoogle Scholar
  27. Kurabayashi M, Lewis H, Raven PH (1962) A comparative study of mitosis in the Onagraceae. Am J Bot 49:1003–1026CrossRefGoogle Scholar
  28. Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967CrossRefPubMedGoogle Scholar
  29. Lang W, Wolff P (2000) Achte Nachträge zur „Flora der Pfalz. Verbreitungsatlas der Farn-und Blütenpflanzen für die Pfalz und ihre Randgebiete“. Mitt Pollichia 86:122–123Google Scholar
  30. Lee CE, Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evol Appl 1:427–448CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lewis H, Raven PH, Venkatesh CS, Wedberg HL (1958) Observations of meiotic chromosomes in the Onagraceae. Aliso 4:73–86Google Scholar
  32. Macaya J, Faúndez L (1998) Boisduvalia glabella (Nutt.) y Epilobium brachycarpum C.P. Presl, dos nueva especies de Onagraceae para Chile. Chloris Chilensis 1. http://www.chlorischile.cl. Accessed 03 Feb 2015
  33. Magnanon S (1995) Grandes raretés armoricaines: redécouvertes et nouveautés. Erica 6:61–66Google Scholar
  34. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, p 512Google Scholar
  35. Nierbauer KU, Kanz B, Zizka G (2014) The widespread naturalisation of Nymphaea hybrids is masking the decline of wild-type Nymphaea alba in Hesse, Germany. Flora 209:122–130CrossRefGoogle Scholar
  36. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol 33:105–110CrossRefPubMedGoogle Scholar
  37. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251CrossRefGoogle Scholar
  38. Price SC, Jain SK (1981) Are Inbreeders Better Colonizers? Oecologia 49:283–286CrossRefGoogle Scholar
  39. Raven PH (1976) Generic and sectional delimitation in Onagraceae, tribe Epilobieae. Ann Missouri Bot Gard 63:326–340CrossRefGoogle Scholar
  40. Raven PH (1979) A survey of reproductive biology in Onagraceae. N Z J Bot 17:575–593. doi: 10.1080/0028825x.1979.10432572 CrossRefGoogle Scholar
  41. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  42. Seavey SR, Raven PH (1977) Chromosomal Evolution in Epilobium sect. Epilobium (Onagraceae). Plant Syst Evol 127:107–119CrossRefGoogle Scholar
  43. Solomon JC (1982) The systematics and evolution of Epilobium (Onagraceae) in South America. Ann Missouri Bot Gard 69:239–335CrossRefGoogle Scholar
  44. Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91:337–354CrossRefGoogle Scholar
  45. Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2012) The more the better? The role of polyploidy in plant invasions. Ann Bot 109:19–45. doi: 10.1093/aob/mcr277 CrossRefGoogle Scholar
  46. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhao Y, Paule J, Fu C, Koch MA (2010) Out of China: distribution history of Ginkgo biloba L. Taxon 59:495–504Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Botany and Molecular EvolutionSenckenberg Research InstituteFrankfurt am MainGermany
  2. 2.Department of Diversity, Evolution and Phylogeny of Higher Plants and Lichens, Institute for Ecology, Evolution and DiversityGoethe UniversityFrankfurt am MainGermany

Personalised recommendations