Advertisement

Biological Invasions

, Volume 18, Issue 10, pp 2897–2909 | Cite as

Contrasting historical and current land-use correlation with diverse components of current alien plant invasions in Mediterranean habitats

  • Maria ClotetEmail author
  • Corina Basnou
  • Guillem Bagaria
  • Joan Pino
Original Paper

Abstract

Habitat invasion by alien plants is strongly modulated by environmental and landscape factors. However, the effect of landscape history remains largely unknown, despite the fact that it could play an important role in many stages of invasion processes, even long after land-use changes have occurred determining invasion debts. We analysed the effects of past landscape and recent changes therein, together with habitat type and current context (i.e. climate, topography and landscape), on three components of the invasion process at habitat scale: alien species presence (i.e. at least one alien species occurring), richness (number of species found) and abundance (mean species cover). We selected 531 plots in nine habitat types in Barcelona province (7725 km2) and recorded alien (neophyte) species cover. We performed Generalized Linear Models on these invasion components using the generated data and a set of predictors of habitat, context and landscape factors obtained from plot sampling and digital cartography. The results show that invasion components are affected by diverse habitat and context factors and, in some cases, by landscape history. Alien species presence is influenced by habitat type and the current environmental context, and by the number of habitat changes in the adjacent landscape; on the other hand, species richness is only associated with the current context and species abundance is only influenced by historical cropland cover. The association between alien species presence and abundance and past and recent landscape changes suggests the existence of accumulated invasion debts at habitat scale that might be relevant to habitat management.

Keywords

Alien species colonization Alien species spread Habitat invasibility Land-use legacy Invasion credit Invasion degree 

Notes

Acknowledgments

This study has been supported by the EXOCAT and the SITxell projects, funded by the autonomous government of Catalonia (Generalitat de Catalunya) and the Barcelona County Council (Diputació de Barcelona), respectively.

Supplementary material

10530_2016_1181_MOESM1_ESM.docx (391 kb)
Correlogram for the full model of alien species presence (a), richness (b) and abundance (c) testing for spatial autocorrelation using Moran’s Index (DOCX 391 kb)

References

  1. Ahern RG, Landis DA, Reznicek AA, Schemske DW (2010) Spread of exotic plants in the landscape: the role of time, growth habitat, and history of invasiveness. Biol invas 12:3157–3169CrossRefGoogle Scholar
  2. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect plant ecol 3(1):52–66CrossRefGoogle Scholar
  3. Andreu J, Pino J, Basnou C, Guardiola M, Ordóñez JL(2012) EXOCAT: Les espècies exòtiques a CatalunyaGoogle Scholar
  4. Aragón R, Morales JM (2003) Species composition and invasion in NW Argentinian secondary forests: effects of land use history, environment and landscape. J Veg Sci 14:195–204CrossRefGoogle Scholar
  5. Bartuszevige AM, Gorchov DL, Raab L (2006) The relative importance of landscape and community features in the invasion of an exotic shrub in a fragmented landscape. Ecography 29:213–222CrossRefGoogle Scholar
  6. Basnou C, Iguzquiza J, Pino J (2015) Examining the role of landscape structure and dynamics in alien plant invasion from urban Mediterranean coastal habitats. Landscape Urban Plan 136:156–164CrossRefGoogle Scholar
  7. Bennett JR, Vellend M, Lilley PL et al (2012) Abundance, rarity and invasion debt among exotic species in a patchy ecosystem. Biol Invas 15:707–716CrossRefGoogle Scholar
  8. Blackburn TJ, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosík V, Wilson JRU, Richardson RM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefPubMedGoogle Scholar
  9. Braun-Blanquet J, Fuller GD, Conrad H (1932) Plant sociology. The study of plant communities, McGraw-HillGoogle Scholar
  10. Casasayas T (1989) La flora al·lòctona de Catalunya. Catàleg raonat de les plantes vasculars exòtiques que creixen sense cultiu del NE de la Península Ibèrica. PhD Thesis, Universitat de Barcelona, BarcelonaGoogle Scholar
  11. Catford JA, Vesk PA, White MD, Wintle BA (2011) Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers Distrib 17:1099–1110CrossRefGoogle Scholar
  12. Chytrý M, Pyšek P, Tichý L, Knollová I, Danihelka J (2005) Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77:339–354Google Scholar
  13. Chytrý M, Jarosik V, Pyšek P, Hájek O, Knollova I, Tichý L, Danihelka J (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553CrossRefPubMedGoogle Scholar
  14. Colautti RI, Grigorovich IA, Macisaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol invas 8:1023–1037CrossRefGoogle Scholar
  15. Cornell HV, Harrison SP (2014) What are species pool and when are they important? Annu Rev Ecol Evol S 45:45–67CrossRefGoogle Scholar
  16. Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 1:1–12CrossRefGoogle Scholar
  17. Crawley MJ (1987) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell Scientific Publications, Oxford, pp 429–543Google Scholar
  18. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534CrossRefGoogle Scholar
  19. Degasperis B, Motzkin G (2007) Windows of opportunity: historical and ecological controls on Berberis thunbergii invasions. Ecology 88:3115–3125CrossRefPubMedGoogle Scholar
  20. Deutschewitz K, Lausch A, Kühnm I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global ecol biogeogr 12:299–311CrossRefGoogle Scholar
  21. Domènech R, Vilà M, Pino J, Gesti J (2005) Historical land use legacy and Cortaderia selloana invasion in the Mediterranean region. Glob Change Biol 11:1054–1064CrossRefGoogle Scholar
  22. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  23. Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarosík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilà M, Genovesi P, Gherardi F, Desprez-Loustau ML, Roques A, Pysek P (2011) Socioeconomic legacy yields an invasion debt. PNAS 108:203–207CrossRefPubMedGoogle Scholar
  24. Essl F, Dullinger S, Rabitsch W, Hulme PE, Pysek P, Wilson JRU, Richardson DM (2015) Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers Distrib 21(4):534–547CrossRefGoogle Scholar
  25. Gassó N, Pyšek P, Vilà M, Williamson M (2010) Spreading to a limit: the time required for a neophyte to reach its maximum range. Divers Distrib 16:310–311CrossRefGoogle Scholar
  26. Gassó N, Pino J, Font X, Vilà M (2012) Regional context affects native and alien plant species richness across habitat types. Appl Veg Sci 15:4–13CrossRefGoogle Scholar
  27. Gavier-pizarro GI, Radeloff VC, Stewart SI, Huebner CD, Keuler NS (2010) Housing is positively associated with invasive exotic plant richness in New England, USA. Ecol Appl 20:1913–1925CrossRefPubMedGoogle Scholar
  28. Giraldo-Beltrán P, Andreu J, Pino J (2015) Exploring changes in the invasion pattern of alien flora in Catalonia (NE of Spain) from large datasets. Biol Invas 17:1–14CrossRefGoogle Scholar
  29. González Moreno P, Pino J, Carreras D, Basnou C, Fernández-rebollar I, Vilà M (2013) Quantifying the landscape influence on plant invasions in Mediterranean coastal habitats. Landscape Ecol 28:891–903CrossRefGoogle Scholar
  30. Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160CrossRefPubMedGoogle Scholar
  31. Jeschke JM, Aparicio LG, Haider S, Heger T, Lortie CJ, Pysek P, Strayer DL (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20CrossRefGoogle Scholar
  32. Kalusová V, Chytrý M, Peet RK, Wentworth TR (2014) Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants. Global Ecol Biogeogr 23:1366–1375CrossRefGoogle Scholar
  33. Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek P, Prach K, Réjmanek M, Wade M (eds) Plant invasions. SPB Academic Publishers, Amsterdam, pp 15–38Google Scholar
  34. Kumar S, Stohlgren TJ, Chong GW (2006) Spatial heterogeneity influences native and non-native plant species richness. Ecology 87:3186–3199CrossRefPubMedGoogle Scholar
  35. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571CrossRefPubMedGoogle Scholar
  36. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26CrossRefGoogle Scholar
  37. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536CrossRefGoogle Scholar
  38. Maron JL, Vilà M (2001) When do herbivores affect plant invasions? Evidence for the natural enemies and biotic resistence hypotheses. Oikos 3:361–373CrossRefGoogle Scholar
  39. Molowny-Horas R, Basnou C, Pino J (2015) A multivariate fractional regression approach to modelling land use and cover dynamics in a Mediterranean landscape. Comput Environ Urban Syst 54:47–55CrossRefGoogle Scholar
  40. Mosher ES, Silander JA, Latimer AM (2009) The role of land use history in major invasions by woody plant species in the northeastern North American landscape. Biol invas 11:2317–2328CrossRefGoogle Scholar
  41. Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841CrossRefGoogle Scholar
  42. Pino J, Font X, Carbó J, Jové M, Pallarès L (2005) Large-scale correlates of alien plant invasion in Catalonia (NE of Spain). Biol Conserv 122:339–350CrossRefGoogle Scholar
  43. Pino J, Seguí JM, Alvarez N (2006) Invasibility of four plant communities in the Llobregat delta (Catalonia, NE of Spain) in relation to their historical stability. Hydrobiologia 570:257–263CrossRefGoogle Scholar
  44. Pino J, Vilà M, Álvarez N, Seguí JM, Guerrero C (2009) Niche breadth rather than reproductive traits explains the response of wetland monocotyledons to land-cover change. Appl Veg Sci 12:119–130CrossRefGoogle Scholar
  45. Pino J, Arnan X, Rodrigo A, Retana J (2013) Post-fire invasion and subsequent extinction of Conyza spp. in Mediterranean forests is mostly explained by local factors. Weed Res 53:470–478CrossRefGoogle Scholar
  46. Pretto F, Celesti-grapow L, Carli E, Blasi C (2010) Influence of past land use and current human disturbance on non-native plant species on small Italian islands. Plant Ecol 210:225–239CrossRefGoogle Scholar
  47. Pyšek P, Richardson DM, Rejmánek M, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143CrossRefGoogle Scholar
  48. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker B, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  50. Seabloom EW, Williams JW, Slayback D, Stoms DM, Viers JH, Dobson AP (2006) Human impacts, plant invasion, and imperiled plant species in California. Ecol Appl 16:1338–1350CrossRefPubMedGoogle Scholar
  51. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273CrossRefPubMedGoogle Scholar
  52. Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landscape Ecol 26:461–472CrossRefGoogle Scholar
  53. Vilà M, Pujadas J (2001) Land use and socio-economic correlates of plant invasions in European and North African countries. Biol Conserv 100:397–401CrossRefGoogle Scholar
  54. Vilà M, Burriel JA, Pino J et al (2003) Association between Opuntia spp. Invasion and changes in land-cover in the Mediterranean region. Glob Change Biol 9:1234–1239CrossRefGoogle Scholar
  55. Vilà M, Pino J, Font X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:35–42CrossRefGoogle Scholar
  56. Walter J, Essl F, Englisch T, Kiehn M (2005) Neophytes in Austria: habitat preferences and ecological effects. Biol invas 6:13–25Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria Clotet
    • 1
    Email author
  • Corina Basnou
    • 1
  • Guillem Bagaria
    • 1
  • Joan Pino
    • 1
    • 2
  1. 1.CREAFCerdanyola del VallèsSpain
  2. 2.Universitat Autònoma BarcelonaCerdanyola del VallèsSpain

Personalised recommendations