Advertisement

Biological Invasions

, Volume 18, Issue 10, pp 2871–2881 | Cite as

Reduced population size can induce quick evolution of inbreeding depression in the invasive ladybird Harmonia axyridis

  • Guillaume J. M. Laugier
  • Gilles Le Moguédec
  • Wang Su
  • Ashraf Tayeh
  • Laurent Soldati
  • Bruno Serrate
  • Arnaud Estoup
  • Benoît Facon
Original Paper

Abstract

Understanding biological invasion is currently one of the main scientific challenges for ecologists. The introduction process is crucial for the success of an invasion, especially when it involves a demographic bottleneck. A small introduced population is expected to face a higher risk of extinction before the first stage of invasion is complete if inbreeding depression, caused by the expression of deleterious alleles, is important. Changes in mating regimes or in population size can induce the evolution of deleterious allele frequencies, either by selection or by drift, possibly resulting in the purging or the fixation of such alleles within the population. The harlequin ladybird Harmonia axyridis became invasive on several continents following a scenario including at least one event of demographic bottleneck. Although native populations suffered from severe inbreeding depression, it was greatly reduced in invasive ones suggesting that deleterious alleles were purged during the invasion process. In this study, we performed an experiment designed to manipulate the effective population size of H. axyridis across successive generations to mimic contrasting introduction events. We used the measurement of two fitness-related phenotypic traits in order to test (1) if inbreeding depression can evolve at the time-scale of an invasion; and (2) if the changes in inbreeding depression following a bottleneck in laboratory conditions are compatible with the purging of deleterious alleles observed in this species. We found that two generations of very low population size are enough to induce a substantial change in inbreeding depression. Although the genetic changes mostly consisted in fixation of deleterious alleles, purging did also occur, sometimes simultaneously with fixation.

Keywords

Inbreeding depression Bottleneck Purging Fixation Harmonia axyridis 

Supplementary material

10530_2016_1179_MOESM1_ESM.docx (9 kb)
Supplementary material 1 (DOCX 9 kb)

References

  1. Barrett SCH, Charlesworth D (1991) Effects of a change in the level of inbreeding on the genetic load. Nature 352(6335):522–524CrossRefPubMedGoogle Scholar
  2. Barrett SC, Colauti RI, Eckert CG (2007) Plant reproductive systems and evolution during biological invasion. Molecular Ecology 17:373–383CrossRefPubMedGoogle Scholar
  3. Bataillon T, Kirkpatrick M (2000) Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter. Genet Res 75(01):75–81CrossRefPubMedGoogle Scholar
  4. Byers DL, Waller DM (1999) Do plant populations purge their genetic load? effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst pp 479–513Google Scholar
  5. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268CrossRefGoogle Scholar
  6. Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74(3):329–340CrossRefGoogle Scholar
  7. Crawley MJ (2012) The R book. John Wiley, HobokenCrossRefGoogle Scholar
  8. Crnokrak P, Barrett SCH (2002) Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56(12):2347–2358CrossRefPubMedGoogle Scholar
  9. Daehler CC (1999) Inbreeding depression in smooth cordgrass (spartina alterniflora, poaceae) invading san francisco bay. Am J Bot 86(1):131–139CrossRefPubMedGoogle Scholar
  10. Davis HG, Taylor CM, Civille JC, Strong DR (2004) An allee effect at the front of a plant invasion: Spartina in a pacific estuary. J Ecol 92(2):321–327CrossRefGoogle Scholar
  11. Facon B, Hufbauer RA, Tayeh A, Loiseau A, Lombaert E, Vitalis R, Guillemaud T, Lundgren JG, Estoup A (2011) Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr Biol 21(5):424–427CrossRefPubMedGoogle Scholar
  12. Ferran A, Gambier J, Parent S, Legendre K, Tourniere R, Giuge L (1997) The effect of rearing the ladybird harmonia axyridis on ephestia kuehniella eggs on the response of its larvae to aphid tracks. J insect Behav 10(1):129–144CrossRefGoogle Scholar
  13. Fox CW, Scheibly KL, Reed DH (2008) Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution 62(9):2236–2249CrossRefPubMedGoogle Scholar
  14. Frankham R, Ralls K (1998) Conservation biology: inbreeding leads to extinction. Nature 392(6675):441–442CrossRefGoogle Scholar
  15. Glémin S (2003) How are deleterious mutations purged? drift versus nonrandom mating. Evolution 57(12):2678–2687CrossRefPubMedGoogle Scholar
  16. Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst pp 139–162Google Scholar
  17. Keller L, Fournier D (2002) Lack of inbreeding avoidance in the argentine ant Linepithema humile. Behav Ecol 13(1):28–319CrossRefGoogle Scholar
  18. Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11(8):852–866CrossRefPubMedGoogle Scholar
  19. Kirkpatrik M, Jarne Ph (2000) The effects of a bottleneck on inbreeding depression and the genetic load. Am Nat 155(2):154–167CrossRefGoogle Scholar
  20. Kishony R, Leibler S (2003) Environmental stresses can alleviate the average deleterious effect of mutations. J Biol 2(2):14CrossRefPubMedGoogle Scholar
  21. Koch RL (2003) The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J Insect Sci 3(1):p32Google Scholar
  22. Lacy RC, Alaks G, Walsh A (1996) Hierarchical analysis of inbreeding depression in peromyscus polionotus. Evolution pp 2187–2200Google Scholar
  23. Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants. i. genetic models. Evolution pp 24–40Google Scholar
  24. Lombaert E, Guillemaud T, Cornuet JM, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS One 5(3):e9743CrossRefPubMedPubMedCentralGoogle Scholar
  25. Madsen T, Stille B, Shine R (1996) Inbreeding depression in an isolated population of adders vipera berus. Biol Conserv 75(2):113–118CrossRefGoogle Scholar
  26. Majerus TM, Graf von der Schulenburg JH, Majerus ME, Hurst G (1999) Molecular identification of a male-killing agent in the ladybird Harmonia axyridis (pallas)(coleoptera: Coccinellidae). Insect Mol Biol 8(4):551CrossRefPubMedGoogle Scholar
  27. Osawa N (1993) Population field studies of the aphidophagous ladybird beetle Harmonia axyridis (coleoptera: Coccinellidae): Lifetables and key factor analysis. Res Popul Ecol 35(2):335–348CrossRefGoogle Scholar
  28. Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50(1):53–65CrossRefGoogle Scholar
  29. Porcher E, Lande R (2005) The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J Evol Biol 18(3):497–508CrossRefPubMedGoogle Scholar
  30. Pray LA, Goodnight CJ (1995) Genetic variation in inbreeding depression in the red flour beetle tribolium castaneum. Evolution 49(1):176–188CrossRefGoogle Scholar
  31. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/, ISBN 3-900051-07-0
  32. Reed DH, Bryant EH (2001) Fitness, genetic load and purging inexperimental populations of the housefly. Conserv Genet 2(1):57–61CrossRefGoogle Scholar
  33. Roff D (2002) Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Evolution 56(4):768–775CrossRefPubMedGoogle Scholar
  34. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392(6675):491–494CrossRefGoogle Scholar
  35. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freman and company, New YorkGoogle Scholar
  36. Swindell W, Bouzat J (2006) Reduced inbreeding depression due to historical inbreeding in drosophila melanogaster: evidence for purging. J Evol Biol 19(4):1257–1264CrossRefPubMedGoogle Scholar
  37. Verhoeven KJ, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc Roy Soc B Biol Sci 278(1702):2–8CrossRefGoogle Scholar
  38. Wang J, Hill W, Charlesworth D, Charlesworth B et al (1999) Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet Res 74(2):165–178CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Guillaume J. M. Laugier
    • 1
    • 2
  • Gilles Le Moguédec
    • 3
  • Wang Su
    • 4
  • Ashraf Tayeh
    • 1
  • Laurent Soldati
    • 1
  • Bruno Serrate
    • 1
  • Arnaud Estoup
    • 1
  • Benoît Facon
    • 1
  1. 1.Inra, CBGP, UMR 1062MontpellierFrance
  2. 2.Centro de Estudios Avanzados en Zonas ÁridasULSLa SerenaChile
  3. 3.Inra, AMAP, UMR 0931MontpellierFrance
  4. 4.Institute of Plant and Environment ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina

Personalised recommendations