Biological Invasions

, Volume 18, Issue 8, pp 2283–2297 | Cite as

Identification and genetic diversity of two invasive Pissodes spp. Germar (Coleoptera: Curculionidae) in their introduced range in the southern hemisphere

  • Mesfin Wondafrash
  • Bernard Slippers
  • Jeff Garnas
  • Géraldine Roux
  • Jiri Foit
  • David W. Langor
  • Brett P. Hurley
Original Paper

Abstract

During the first half of the twentieth century, two accidental cases of introduction of Pissodes weevils were recorded from the southern hemisphere. The weevils in South Africa were identified as the deodar weevil (Pissodes nemorensis) and those in South America as the small banded pine weevil (Pissodes castaneus). Wide distribution of the two species in their invasive range, general difficulty in identifying some Pissodes spp., and the varying feeding and breeding behaviours of the species in South Africa has necessitated better evidence of species identity and genetic diversity of both species and population structure of the species in South Africa. Barcoding and the Jerry-to-Pat region of the COI gene were investigated. Morphometric data of the South African species was analysed. Our results confirmed the introduction of only one Pissodes species of North American origin to South Africa. However, this species is not P. nemorensis, but an unrecognized species of the P. strobi complex or a hybrid between P. strobi and P. nemorensis. Only P. castaneus, of European origin, was identified from South America. We identified ten mitochondrial DNA haplotypes from South Africa with evidence of moderate genetic structure among geographic populations. Terminal leader and bole-feeding weevils did not differ at the COI locus. A single haplotype was identified from populations of P. castaneus in South America. Results of the present study will have implications on quarantine, research and management of these insect species.

Keywords

Bark weevils Invasive forest insects Pissodes castaneus Pissodes nemorensis Genetic diversity Population structure 

Notes

Acknowledgments

We thank members of Tree Protection Co-operative Program (TPCP), DST-National Research Foundation (NRF) and the University of Pretoria, South Africa for financial support. Kevin Dodds (US Forest Service, USA), Maria Lombardero (University of Santiago de Compostela, Spain), Rodrigo Ahumada (Bioforest SA, Concepción, Chile), Marcos Beeche (SAG, Chile), Cecilia Ruiz (Argentina) and Laura Amaral (Tacuarembó Department, Uruguay) are acknowledged for providing dead insect specimens. We also thank the two anonymous reviewers for their constructive suggestions and comments.

Supplementary material

10530_2016_1159_MOESM1_ESM.pdf (111 kb)
ESM 1 Sampling areas, GPS coordinates and number of specimens used for genetic and morphometric studies of the Pissodes sp. in South Africa (PDF 110 kb)
10530_2016_1159_MOESM2_ESM.pdf (97 kb)
ESM 2 Species, number, collection locality and country information of the non-South African specimens of which the Jerry-to-Pat and barcoding region of COI gene was sequenced (PDF 96 kb)
10530_2016_1159_MOESM3_ESM.pdf (457 kb)
ESM 3 Estimates of net sequence divergence between different Pissodes spp. based on sequences of the Jerry-to-Pat region of the COI gene (PDF 456 kb)
10530_2016_1159_MOESM4_ESM.pdf (436 kb)
ESM 4 Estimates of net sequence divergence between different Pissodes spp. based on sequences of the barcoding region of the COI gene (PDF 435 kb)
10530_2016_1159_MOESM5_ESM.pdf (202 kb)
ESM 5 Mean ± SE and range of morphometric characters of adults of the Pissodes sp. in South Africa (PDF 202 kb)

References

  1. Abgrall JF, Villèn González V, Porcile JF (1999) Estudios de investigación sobre gorgojo de los pinos (I parte). Peligro a la vista. Chil For 24:9–13Google Scholar
  2. Alfaro R (1994) The white pine weevil in British Columbia: biology and damage. In: Alfaro RI, Kiss G, Fraser RG (eds) The white pine weevil: biology, damage and management. British Columbia Ministry of Forests and Lands, Pacific Forestry Centre, Victoria, pp 7–22Google Scholar
  3. Alfaro RI, Ying CC (1990) Levels of Sitka spruce weevil, Pissodes strobi (Peck), damage among Sitka spruce provenances and families near Sayward, British Columbia. Can Entomol 122:607–615CrossRefGoogle Scholar
  4. Anon (1970) Banded pine weevil (Pissodes notatus F.). Insects not known to occur in the USA. Coop Econ Insect Rep 8:65–66Google Scholar
  5. Atkinson TH, Foltz JL, Connor MD (1988) Bionomics of Pissodes nemorensis Germar (Coleoptera: Curculionidae) in northern Florida. Ann Entomol Soc Am 81:255–261CrossRefGoogle Scholar
  6. Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, Holmes TP, Liebhold AM (2011) Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6:e24587CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  8. Belyea RM, Sullivan CR (1956) The white pine weevil: a review of current knowledge. For Chron 32:58–67CrossRefGoogle Scholar
  9. Blakeslee GM, Foltz JL, Oak SW (1981) The deodar weevil, a vector and wounding agent associated with pitch canker of slash pine. Phytopathology 71(8):861Google Scholar
  10. Boissin E, Hurley BP, Wingfield MJ, Vasaitis R, Stenlid J, Davis C, de Groot P, Ahumada R, Carnegie A, Goldarazena A, Klasmer P, Wermelinger B, Slippers B (2012) Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol Ecol 21:5728–5744CrossRefPubMedGoogle Scholar
  11. Boyce TA, Zwick ME, Aquadro CF (1994) Mitochondrial DNA in the bark weevils: Phylogeny and evolution in the Pissodes strobi species group (Coleoptera: Curculionidae). Mol Biol Evol 11:183–194Google Scholar
  12. Brockerhoff EG, Bain J, Kimberley M, Knížek M (2006a) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298CrossRefGoogle Scholar
  13. Brockerhoff EG, Liebhold AM, Jactel H (2006b) The ecology of forest insect invasions and advances in their management. Can J For Res 36:263–268CrossRefGoogle Scholar
  14. CABI (2014) Data sheet. Pissodes castaneous. Invasive species compendium web, http://www.cabi.org/isc/datasheet/41485. Accessed 13 April 2016
  15. Cognato AI, Hoebeke ER, Kajimura H, Smith SM (2015) History of the exotic ambrosia beetles Euwallacea interjectus and Euwallacea validus (Coleoptera: Curculionidae: Xyleborini) in the United States. J Econ Entomol 108:1129–1135CrossRefPubMedGoogle Scholar
  16. Coutinho TA, Steenkamp ET, Mongwaketsi K, Wilmot M, Wingfield MJ (2007) First outbreak of pitch canker in a South African pine plantation. Aust Plant Pathol 36:256–261CrossRefGoogle Scholar
  17. Craighead FC (1950) Insect enemies of eastern forests. US Department of Agriculture, WashingtonCrossRefGoogle Scholar
  18. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  19. Day KR, Nordlander G, Kenis M, Halldorson G (2004) General biology and life cycles of bark weevils. In: Lieutier F, Day KR, Battisti A, Grégoire JC, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, New York, pp 331–349CrossRefGoogle Scholar
  20. EPPO (1999) Reporting service: Pissodes nemorensis present in Asia, 4th edn. EPPO, ParisGoogle Scholar
  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  22. Fontaine MS, Foltz JL, Nation JL (1983) Reproductive anatomy and seasonal development of the deodar weevil, Pissodes nemorensis (Coleoptera: Curculionidae), in north Florida. Environ Entomol 12:687–691CrossRefGoogle Scholar
  23. Garnas JR, Hurley BP, Slippers B, Wingfield MJ (2012) Biological control of forest plantation pests in an interconnected world requires greater international focus. Int J Pest Manag 58:211–223CrossRefGoogle Scholar
  24. Garnas JR, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions. doi: 10.1007/s10530-016-1082-9 Google Scholar
  25. Glaubitz J (2001) Randomly amplified polymorphic DNA reveals fine-scale genetic structure in Pissodes strobi (Coleoptera: Curculionidae). Can Entomol 133:229–238CrossRefGoogle Scholar
  26. Godwin PA, Odell TM (1967) Experimental hybridization of Pissodes strobi and P. approximatus (Coleoptera: Curculionidae). Ann Entomol Soc Am 60:55–58CrossRefGoogle Scholar
  27. Gomez C, Hartel M (2010) El gorgojo de la corteza del pino, Pissodes castaneus. In: Villacide JM, Corley JC (eds) Serie Técnica: Manejo integrado de plagas forestales. Laboratorio de Ecología de Insectos, INTA EEA, BarilocheGoogle Scholar
  28. Goodwin SB, Drenth A, Fry WE (1992) Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr Gen 22:107–115CrossRefGoogle Scholar
  29. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  30. Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ, Kimberley M, Lowenstein F, Nuding A, Olson LJ, Turner J, Vasilaky KN (2014) Effectiveness of the international Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE 9(5):1–15CrossRefGoogle Scholar
  31. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 45:95–98Google Scholar
  32. Hurley BP, Slippers B, Wingfield BD, Govender P, Smith JE, Wingfield MJ (2010) Genetic diversity of Bradysia difformis (Sciaridae: Diptera) populations reflects movement of an invasive insect between forestry nurseries. Biol Invasions 12:729–733CrossRefGoogle Scholar
  33. Iede ET, Filho WR, Zaleski SRM, FdeA Marques, Caldato N (2007) Monitoramento e controle de Pissodes castaneus em Pinus spp. Circular Têcnica, ColomboGoogle Scholar
  34. Jankowiak R, Bilański P (2013) Association of the pine-infesting Pissodes species with ophiostomatoid fungi in Poland. Eur J For Res 132:523–534CrossRefGoogle Scholar
  35. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  36. Keller RP, Geist J, Jeschke JM, Kühn I (2011) Invasive species in Europe: ecology, status, and policy. Environ Sci Eur 23:1–17CrossRefGoogle Scholar
  37. Laffin RD, Langor DW, Sperling FAH (2004) Population structure and gene flow in the white pine weevil, Pissodes strobi (Coleoptera: Curculionidae). Ann Entomol Soc Am 97:949–956CrossRefGoogle Scholar
  38. Langor DW, Sperling FAH (1995) Mitochondrial DNA variation and identification of bark weevils in the Pissodes strobi species group in western Canada (Coleoptera: Curculionidae). Can Entomol 127:895–911CrossRefGoogle Scholar
  39. Langor DW, Sperling FAH (1997) Mitochondrial DNA sequence divergence in weevils of the Pissodes strobi species complex (Coleoptera: Curculionidae). Insect Mol Biol 6:255–265CrossRefPubMedGoogle Scholar
  40. Langor DW, Drouin JA, Wong HR (1992) The lodgepole terminal weevil in the Prairie provinces. Forest Management Note 55:7, Forestry Canada, Northern Forestry Centre, EdmontonGoogle Scholar
  41. Lewis KJ, Alexander SA (1986) Insects associated with the transmission of Verticicladiella procera. Can J For Res 16:1330–1333CrossRefGoogle Scholar
  42. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  43. Mapondera TS, Burgess T, Matsuki M, Oberprieler RG (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust J Entomol 51:177–188CrossRefGoogle Scholar
  44. Marques FA, Zaleski SRM, Lazzari S, Frensch G, Senhorini GA, Maia BHLNS, Tröger A, Francke W, Ieded ET, Mori K (2011) Identification of (1R, 2S)-grandisal and (1R, 2S)-grandisol in Pissodes castaneus male-produced volatiles: evidence of a sex pheromone. J Braz Chem Soc 22:1050–1055CrossRefGoogle Scholar
  45. Mattson WJ (1998) Exotic insects in North American forests: ecological systems forever altered. In: Britton KO (ed) Exotic pests of eastern forests. Proceedings of a conference, 8–10 April 1997, NashvilleGoogle Scholar
  46. McCullough DG, Work TT, Cavey JF, Liebhold AM, Marshall D (2006) Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol Invasions 8:611–630CrossRefGoogle Scholar
  47. Mitchell RG, Steenkamp ET, Coutinho TA, Wingfield MJ (2011) The pitch canker fungus, Fusarium circinatum: implications for South African forestry. South For: J For Sci 73:1–13Google Scholar
  48. Nadel RL, Slippers B, Scholes MC, Lawson SA, Noack AE, Wilcken CF, Bouvet JP, Wingfield MJ (2010) DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Biol Invasions 12:1067–1077CrossRefGoogle Scholar
  49. O’Brien CW (1989) Revision of the weevil genus Pissodes in Mexico with notes on Neotropical Pissodini (Coleoptera, Curculionidae). Trans Am Entomol Soc: 415–432Google Scholar
  50. Ollieu MM (1971) Damage to southern pines in Texas by Pissodes nemorensis. J Econ Entomol 64:1456–1459CrossRefGoogle Scholar
  51. Overgaard NA, Nachod LH (1971) Deodar weevil causes pine mortality in Louisiana. J Econ Entomol 64:1329–1330CrossRefGoogle Scholar
  52. Panzavolta T, Tiberi R (2010) Observations on the life cycle of Pissodes castaneus in central Italy. Bull Insectol 63:45–50Google Scholar
  53. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pereyra VA, Gomez CA, La Manna L, Roux G, Lanteri AA, Vallejos NC, Marvaldi AE (2015) Introduction and establishment of Pissodes castaneus (Coleoptera: Curculionidae) in the Andean Patagonia of Argentina. J Econ Entomol: tov304Google Scholar
  55. Phillips TW, West JR, Foltz JL, Silverstein RM, Lanier GN (1984) Aggregation pheromone of the deodar weevil, Pissodes nemorensis (Coleoptera: Curculionidae): isolation and activity of grandisol and grandisal. J Chem Ecol 10:1417–1423CrossRefPubMedGoogle Scholar
  56. Phillips TW, Teale SA, Lanier GN (1987) Biosystematics of Pissodes Germar (Coleoptera: Curculionidae): seasonality, morphology, and synonymy of P. approximatus Hopkins and P. nemorensis Germar. Can Entomol 119:465–480CrossRefGoogle Scholar
  57. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701CrossRefGoogle Scholar
  58. Smith SG, Sugden BA (1969) Host trees and breeding sites of native North American Pissodes bark weevils, with a note on synonymy. Ann Entomol Soc Am 62:146–148Google Scholar
  59. Smith SG, Takenouchi Y (1969) Chromosomal polymorphism in Pissodes weevils: further on incompatibility in P. terminals. Can J Genet Cytol 11:761–782CrossRefPubMedGoogle Scholar
  60. StatSoft (2013) Statistica 12. Stat Soft Inc, TulsaGoogle Scholar
  61. Steve P, Shaw F (1958) Cooperative economic insect report. Plant Pest Control Division, Agricultural Research Service, Department of Ariculture, WashingtonGoogle Scholar
  62. Swofford D (2000) PAUP* 4.0: Phylogenetic analysis using parsimony. Sinauer Associates, SunderlandGoogle Scholar
  63. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tobin PC (2015) Ecological consequences of pathogen and insect invasions. Current Forestry Report 1:25–32CrossRefGoogle Scholar
  65. Webb DV (1974) Forest and timber entomology in the Republic of South Africa. Entomol Memor Dep Agric Tech Serv Repub S Afr 34:1–21Google Scholar
  66. Williams DJM, Langor DW (2002) Morphometric study of the Pissodes strobi complex (Coleoptera: Curculionidae). Can Entomol 134:447–466CrossRefGoogle Scholar
  67. Wingfield MJ, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon RT, Wingfield BD, Coutinho TA (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Aust Plant Pathol 37:319–334CrossRefGoogle Scholar
  68. Zaleski SRM, Lazzari S, Lazzarotto CM, Panzavolta T, Iede ET, FdeA Marques (2013) Genetic structure of populations of Pissodes castaneus (De Geer)(Coleoptera, Curculionidae) using amplified fragment length polymorphism. Rev Bras Entomol 57:405–410CrossRefGoogle Scholar
  69. Zhang R (2007) Species, distribution and host plants of genus Pissodes (Coleoptera: Curculionidae) and its potential invasive threat. Scientia Silvae Sinicae 43:38–43Google Scholar
  70. Zhang H, Langor DW, Ye H, Li Z, Laffin RD (2007) Genetic divergence among populations of Pissodes yunnanensis (Coleoptera: Curculionidae) in southwestern China. Can Entomol 139:308–318CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mesfin Wondafrash
    • 1
    • 2
  • Bernard Slippers
    • 3
  • Jeff Garnas
    • 1
  • Géraldine Roux
    • 4
    • 5
  • Jiri Foit
    • 6
  • David W. Langor
    • 7
  • Brett P. Hurley
    • 1
  1. 1.Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.School of Plant SciencesHaramaya UniversityDire DawaEthiopia
  3. 3.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  4. 4.INRA UR633 Zoologie ForestièreOrléansFrance
  5. 5.Université d’OrléansOrléansFrance
  6. 6.Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood TechnologyMendel University of Agriculture and ForestryBrnoCzech Republic
  7. 7.Natural Resources CanadaCanadian Forest ServiceEdmontonCanada

Personalised recommendations