Biological Invasions

, Volume 18, Issue 5, pp 1295–1304 | Cite as

Worldwide freshwater fish homogenization is driven by a few widespread non-native species

  • Aurèle ToussaintEmail author
  • Olivier Beauchard
  • Thierry Oberdorff
  • Sébastien Brosse
  • Sébastien Villéger
Original Paper


Introduction of non-native species have changed the composition of freshwater fish assemblages throughout the world and hence the dissimilarity between them, either toward homogenization (i.e. decrease in dissimilarity) or differentiation (i.e. increase in dissimilarity). However, there is still no assessment of individual contributions of non-native species to this overall trend at the global scale. Here, we disentangle individual non-native species effect from the global effect of the whole introduced species pool at the biogeographic realm scale and test which determinant can explain the effect of non-native species on changes in assemblage dissimilarity. Our results show that the contribution of introduced species on changes in dissimilarity is highly variable and all directions of changes are observed through the introduction process, i.e. either toward homogenization, differentiation or no change. Overall, only a few widespread species contribute to the worldwide homogenization pattern, whereas most of introduced species slightly contribute to the global change in dissimilarity. The effect of species on change in dissimilarity was influenced by the introduction pressure but also by whether introduced species were translocated (i.e. introduced to other basins within their biogeographic realm) or exotic (i.e. introduced from other biogeographic realms). Homogenization is strongly determined by the species translocated within a realm and only by few widespread exotic species whereas the majority of exotics contribute to a differentiation effect. Nevertheless, under future intensified human pressure, the exotic species spread across realms is predicted to increase and their differentiation effect might turn towards homogenization, and might trigger the global homogenization trend.


Freshwater fish Introduction Beta-diversity Translocation Exotic species 



This work was supported by the EU BioFresh Project (7th Framework European Program. Contract No. 226874). AT thanks the French National Centre of Scientific Research for financial support. EDB is part of the “Laboratoire d’Excellence” (LABEX) entitled TULIP (ANR-10-LABX-41) and CEBA (ANR-10-LABX-25-01).


  1. Alcaraz C, Vila-Gispert A, García-Berthou E (2005) Profiling invasive fish species: the importance of phylogeny and human use. Divers Distrib 11:289–298CrossRefGoogle Scholar
  2. Arthington AH (1991) Ecological and genetic impacts of introduced and translocated freshwater fishes in Australia. Can J Fish Aquat Sci 48:33–43CrossRefGoogle Scholar
  3. Ayres R, Clunie P (2010) Toward a national emergency response system for freshwater fish incursion. Canberra, AustraliaGoogle Scholar
  4. Balon EK (2004) About the oldest domesticates among fishes. J Fish Biol 65:1–27CrossRefGoogle Scholar
  5. Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812CrossRefGoogle Scholar
  6. Blanchet S, Grenouillet G, Beauchard O et al (2010) Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for Bergmann’s rule. Ecol Lett 13:421–431CrossRefPubMedGoogle Scholar
  7. Britton JR, Gozlan RE (2013) Geo-politics and freshwater fish introductions: how the Cold War shaped Europe’s fish allodiversity. Glob Environ Change 23:1566–1574CrossRefGoogle Scholar
  8. Britton JR, Gozlan RE, Copp GH (2011) Managing non-native fish in the environment. Fish Fish 12:256–274CrossRefGoogle Scholar
  9. Brosse S, Beauchard O, Blanchet S et al (2013) Fish-SPRICH: a database of freshwater fish species richness throughout the World. Hydrobiologia 700:343–349CrossRefGoogle Scholar
  10. Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168CrossRefPubMedGoogle Scholar
  11. Cadotte MW, Hamilton MA, Murray BR (2009) Phylogenetic relatedness and plant invader success across two spatial scales. Divers Distrib 15:481–488CrossRefGoogle Scholar
  12. Cassey P, Lockwood J (2007) The varying role of population abundance in structuring indices of biotic homogenization. J Biogeogr 35:884–892CrossRefGoogle Scholar
  13. Clavero M (2011) Assessing the risk of freshwater fish introductions into the Iberian Peninsula. Freshw Biol 56:2145–2155CrossRefGoogle Scholar
  14. Clavero M, García-Berthou E (2006) Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecol Appl 16:2313–2324CrossRefPubMedGoogle Scholar
  15. Cook RD (1977) Detection of influential observation in linear regression. Technometrics 19:15–18Google Scholar
  16. Costello C, McAusland C, Solow A, Springborn M (2005) International trade and the risk of biological invasions. Santa Barbara, CaliforniaGoogle Scholar
  17. Crawford SS, Muir AM (2008) Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev Fish Biol Fish 18:313–344CrossRefGoogle Scholar
  18. France KE, Duffy JE (2006) Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441:1139–1143CrossRefPubMedGoogle Scholar
  19. Gherardi F, Acquistapace P (2007) Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshw Biol 52:1249–1259CrossRefGoogle Scholar
  20. Gozlan RE, Britton JR, Cowx I, Copp GH (2010) Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–786CrossRefGoogle Scholar
  21. Hair JF, Black WC, Babin BJ et al (2009) Multivariate data analysis, 7th edn. Upper Saddle River, New Jersey, Prentice-HallGoogle Scholar
  22. Hulme P, Roy D, Cunha T, Larsson T (2009) A pan-European inventory of alien species: rationale, implementation and implications for managing biological invasions. In: Handbook of alien species in Europe. Springer, pp 1–14Google Scholar
  23. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bull la Société Vaudoise des Sci Nat 37:547–579Google Scholar
  24. La Sorte FA, McKinney ML (2007) Compositional changes over space and time along an occurrence–abundance continuum: anthropogenic homogenization of the North American avifauna. J Biogeogr 34:2159–2167CrossRefGoogle Scholar
  25. Lauzeral C, Leprieur F, Beauchard O et al (2011) Identifying climatic niche shifts using coarse-grained occurrence data: a test with non-native freshwater fish. Glob Ecol Biogeogr 20:407–414CrossRefGoogle Scholar
  26. Leprieur F, Beauchard O, Blanchet S et al (2008a) Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol 6:e28CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leprieur F, Beauchard O, Hugueny B et al (2008b) Null model of biotic homogenization: a test with the European freshwater fish fauna. Divers Distrib 14:291–300CrossRefGoogle Scholar
  28. Lévêque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595:545–567CrossRefGoogle Scholar
  29. Lintermans M (2004) Human-assisted dispersal of alien freshwater fish in Australia. N Z J Mar Freshw Res 38:481–501CrossRefGoogle Scholar
  30. McKinney M, Lockwood J (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453CrossRefPubMedGoogle Scholar
  31. Milner AM, Petts GE (1994) Glacial rivers: physical habitat and ecology. Freshw Biol 32:295–307CrossRefGoogle Scholar
  32. Olden J (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039Google Scholar
  33. Olden J, Poff N (2004) Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85:1867–1875CrossRefGoogle Scholar
  34. Olden JD, Poff NL, McKinney ML (2006) Forecasting faunal and floral homogenization associated with human population geography in North America. Biol Conserv 127:261–271CrossRefGoogle Scholar
  35. Olden JD, Kennard M, Pusey B (2008) Species invasions and the changing biogeography of Australian freshwater fishes. Glob Ecol Biogeogr 17:25–37Google Scholar
  36. Olden JD, Lockwood J, Parr C (2011) Biological invasions and the homogenization of faunas and floras. In: Conservation biogeography. Wiley, pp 224–243Google Scholar
  37. Pyke GH (2008) Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annu Rev Ecol Evol Syst 39:171–191CrossRefGoogle Scholar
  38. R Development Core Team (2014) R: a language and environment for statistical computing. Austria, ViennaGoogle Scholar
  39. Rahel F (2000) Homogenization of fish faunas across the United States. Science 288:854–856CrossRefPubMedGoogle Scholar
  40. Rahel F (2007) Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol 52:696–710CrossRefGoogle Scholar
  41. Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18:561–566CrossRefGoogle Scholar
  42. Taylor BW, Irwin RE (2004) Linking economic activities to the distribution of exotic plants. Proc Natl Acad Sci USA 101:17725–17730CrossRefPubMedPubMedCentralGoogle Scholar
  43. Toussaint A, Beauchard O, Oberdorff T et al (2014) Historical assemblage distinctiveness and the introduction of widespread non-native species explain worldwide changes in freshwater fish taxonomic dissimilarity. Glob Ecol Biogeogr 23:574–584CrossRefGoogle Scholar
  44. Villéger S, Brosse S (2012) Measuring changes in taxonomic dissimilarity following species introductions and extirpations. Ecol Indic 18:552–558CrossRefGoogle Scholar
  45. Villéger S, Blanchet S, Beauchard O et al (2011) Homogenization patterns of the world’s freshwater fish faunas. Proc Natl Acad Sci USA 108:18003–18008CrossRefPubMedPubMedCentralGoogle Scholar
  46. Villéger S, Blanchet S, Beauchard O et al (2015) From current distinctiveness to future homogenization of the world’s freshwater fish faunas. Divers Distrib 21:223–235CrossRefGoogle Scholar
  47. Vitousek PM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  48. Welcomme RL (1988) International introductions of inland aquatic species. Food and Agriculture Organization of the United Nations, Fisheries Technical Paper 294. Rome, Italy, pp 1–318Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Aurèle Toussaint
    • 1
    Email author
  • Olivier Beauchard
    • 2
  • Thierry Oberdorff
    • 3
  • Sébastien Brosse
    • 1
  • Sébastien Villéger
    • 4
  1. 1.CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique)Université Paul SabatierToulouse Cedex 4France
  2. 2.Netherlands Institute for Sea Research (NIOZ)YersekeThe Netherlands
  3. 3.UMR “BOREA” (IRD 207, CNRS 7208, MNHN, UPMC), DMPAMuseum National d’Histoire NaturelleParisFrance
  4. 4.Laboratoire Biodiversité Marine et ses Usages (MARBEC), UMR 9190 CNRS-UM-IFREMER-IRDUniversité de MontpellierMontpellier Cedex 5France

Personalised recommendations