Biological Invasions

, Volume 18, Issue 2, pp 427–444 | Cite as

The distribution of an invasive fish species is highly affected by the presence of native fish species: evidence based on species distribution modelling

  • Pieterjan Verhelst
  • Pieter Boets
  • Gerlinde Van Thuyne
  • Hugo Verreycken
  • Peter L. M. Goethals
  • Ans M. Mouton
Original Paper

Abstract

Topmouth gudgeon (Pseudorasbora parva) is one of the most invasive aquatic fish species in Europe and causes adverse effects to ecosystem structure and functioning. Knowledge and understanding of the species’ interactions with the environment and with native fish are important to stop and prevent the further spread of the species. Creating species distribution models is a useful technique to determine which factors influence the occurrence and abundance of a species. We applied three different modelling techniques: general additive models, random forests and fuzzy habitat suitability modelling (FHSM) to assess the habitat suitability of topmouth gudgeon. The former two techniques indicated that the abundance of native fish (i.e. biotic variables) was more important than environmental variables when determining the abundance of topmouth gudgeon in Flanders (Belgium). Bitterling (Rhodeus amarus), stone loach (Barbatula barbatula), three-spined stickleback (Gasterosteus aculeatus) and predator abundance were selected as the most important biotic variables and implemented in the FHSM to investigate species interactions. Depending on the preferred food source and spawning behaviour, either coexistence or interspecific competition can occur with bitterling, stone loach and three-spined stickleback. In contrast, the presence of predators clearly had a top down effect on topmouth gudgeon abundance. These findings could be applied as a biological control measure and implemented in conservation strategies in order to reduce the abundance of earlier established populations of topmouth gudgeon.

Keywords

Topmouth gudgeon Non-native Belgium Biotic resistance Species distribution modelling Invasive fish species 

Supplementary material

10530_2015_1016_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Aldridge DC (1999) Development of European bitterling in the gills of freshwater mussels. J Fish Biol 54:138–151CrossRefGoogle Scholar
  2. Andersen MC, Adams H, Hope B, Powell M (2004) Risk assessment for invasive species. Risk Anal 24:787–793CrossRefPubMedGoogle Scholar
  3. Arnold A (1990) Eingebuergerte Fischarten: Zur Biologie und Verbreitung allochthoner Wildfische in Europa. In: Beyer K, Copp GH, Gozlan RE (2007) Microhabitat use and interspecific associations of introduced topmouth gudgeon Pseudorasbora parva and native fishes in a small stream. J Fish Biol 71:224–238Google Scholar
  4. Assilian S (1974) Artificial intelligence in the control of real dynamical systems. London University, LondonGoogle Scholar
  5. Banarescu PM (1990) On the history of the dispersal of Pseudorasbora parva in South-Eastern Europe (Pisces, Cyprinidae). In: Verreycken H, Anseeuw D, Van Thuyne G, Quataert P, Belpaire C (2007) The non-indigenous freshwater fishes of Flanders (Belgium): review, status and trends over the last decade. J Fish Biol 71:160–170Google Scholar
  6. Beyer K, Copp GH, Gozlan RE (2007) Microhabitat use and interspecific associations of introduced topmouth gudgeon Pseudorasbora parva and native fishes in a small stream. J Fish Biol 71:224–238CrossRefGoogle Scholar
  7. Boets P, Pauwels IS, Lock K, Goethals PLM (2014) Using an integrated modelling approach for risk assessment of the ‘killer shrimp’ Dikerogammarus villosus. River Res Appl 4:403–412CrossRefGoogle Scholar
  8. Bovee KD (1982) A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper 12, US Fish and Wildlife Service, Fort Collins, ColoradoGoogle Scholar
  9. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  10. Britton JR, Brazier M (2006) Eradicating the invasive topmouth gudgeon, Pseudorasbora parva, from a recreational fishery in northern England. Fish Manag Ecol 13:329–335CrossRefGoogle Scholar
  11. Britton JR, Davies GD, Brazier M, Pinder AC (2007) A case study on the population ecology of a topmouth gudgeon (Pseudorasbora parva) population in the UK and the implications for native fish communities. Aquat Conserv Mar Freshw Ecosyst 17:749–759CrossRefGoogle Scholar
  12. Britton JR, Brazier M, Davies GD, Chare SI (2008) Case studies on eradicating the Asiatic cyprinid Pseudorasbora parva from fishing lakes in England to prevent their riverine dispersal. Aquat Conserv Mar Freshw Ecosyst 18:867–876CrossRefGoogle Scholar
  13. Britton JR, Davies GD, Brazier M (2010a) Towards the successful control of the invasive Pseudorasbora parva in the UK. Biol Invasions 12:125–131CrossRefGoogle Scholar
  14. Britton JR, Davies GD, Harrod C (2010b) Trophic interactions and consequent impacts of the invasive fish, Pseudorasbora parva, in a native aquatic foodweb: a field investigation in the UK. Biol Invasions 12:1533–1542CrossRefGoogle Scholar
  15. Brosens D, Breine J, Van Thuyne G, Belpaire C, Desmet P, Verreycken H (2015) VIS—a database on the distribution of fishes in inland and estuarine waters in Flanders, Belgium. ZooKeys 475:119–145CrossRefPubMedGoogle Scholar
  16. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  17. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  18. Copp GH, Bianco PG, Bogutskaya NG, Erös T, Falka I, Ferreira MT, Fox MG, Freyhof J, Gozlan RE, Grabowska J, Kováč V, Moreno-Amich R, Naseka AM, Peňáz M, Povž M, Przybylski M, Robillard M, Russell IC, Stakėnas S, Šumer S, Vila-Gispert A, Wiesner C (2005) To be, or not to be, a non-native freshwater fish? J Appl Ichthyol 21:242–262CrossRefGoogle Scholar
  19. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT (2007) Random forests for classification in ecology. Ecology 88:2783–2792CrossRefPubMedGoogle Scholar
  20. D’heygere T, Goethals PLM, De Pauw N (2006) Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks. Ecol Model 195:20–29CrossRefGoogle Scholar
  21. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431CrossRefPubMedGoogle Scholar
  22. Declerck S, Louette G, De Bie T, De Meester L (2002) Patterns of diet overlap between populations of non-indigenous and native fishes in shallow ponds. J Fish Biol 61:1182–1197CrossRefGoogle Scholar
  23. Dedecker A, Goethals PLM, Gabriels W, De Pauw N (2004) Optimisation of Artificial Neural Network (ANN) model design for prediction of macroinvertebrate communities in the Zwalm river basin (Flanders, Belgium). Ecol Model 174:161–173CrossRefGoogle Scholar
  24. Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77CrossRefGoogle Scholar
  25. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  26. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  27. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  28. Fukuda S, De Baets B, Mouton AM, Waegeman W, Nakajima J, Mukai T, Hiramatsu K, Onikura N (2011) Effects of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation. Ecol Model 222:1401–1413CrossRefGoogle Scholar
  29. Fukuda S, De Baets B, Waegeman W, Verwaeren J, Mouton AM (2013) Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environ Model Softw 47:1–6CrossRefGoogle Scholar
  30. Goethals PLM, Dedecker AP, Gabriels W, Lek S, De Pauw N (2007) Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquat Ecol 41:491–508CrossRefGoogle Scholar
  31. González-Salazar C, Stephens CR, Marquet PA (2013) Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecol Model 248:57–70CrossRefGoogle Scholar
  32. Gozlan RE, St-Hilaire S, Feist SW, Martin P, Kent ML (2005) Disease threat to European fish. Nature 435:1046. doi:10.1038/4351046a CrossRefPubMedGoogle Scholar
  33. Gozlan RE, Andreou D, Asaeda T, Beyer K, Bouhadad R, Burnard D, Calola N, Cakic P, Djikanovic V, Esmaeili HR, Falka I, Golicher D, Harka A, Jeney G, Kovác V, Musil J, Nocita A, Povz M, Poulet N, Virbickas T, Wolter C, Tarkan AS, Tricarico E, Trichkova T, Verreycken H, Witkowski A, Zhang C, Zweimueller I, Brriton JR (2010) Pan-continental invasion of Pseudorasbora parva: towards a better understanding of freshwater fish invasions. Fish Fish 11:315–340CrossRefGoogle Scholar
  34. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  35. Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100CrossRefGoogle Scholar
  36. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  37. Heikkinen RK, Luoto M, Virkkala R, Pearson RG, Körber J-H (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Glob Ecol Biogeogr 16:754–763CrossRefGoogle Scholar
  38. Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Willis SG (2014) Improving species distribution models: the value of data on abundance. Methods Ecol Evol 5:506–513CrossRefGoogle Scholar
  39. Hynes HBN (1950) The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygoteus pungitius), with a review of methods used in studies of the food of fishes. J Anim Ecol 1:36–58CrossRefGoogle Scholar
  40. Jackson MC, Britton JR (2014) Divergence in the trophic niche of sympatric freshwater invaders. Biol Invasions 16:1095–1103CrossRefGoogle Scholar
  41. Jurvelius J, Leinikki J, Mamylov V, Pushkin S (1996) Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): a simultaneous up- and down-looking echo-sounding study. Fish Res 27:227–241CrossRefGoogle Scholar
  42. Kampichler C, Barthel J, Wieland R (2000) Species density of foliage-dwelling spiders in field margins: a simple, fuzzy rule-based model. Ecol Model 129:87–99CrossRefGoogle Scholar
  43. Kapusta A, Bogacka-Kapusta E, Czarnecki B (2008) The significance of stone moroko Pseudorasbora parva (Temminck and Schlegel) in the small-sized fish assemblages in the littoral zone of the heated Lake Lichenskie. Arch Pol Fish 16:49–62CrossRefGoogle Scholar
  44. Keast A (1979) Patterns of predation in generalist feeders. In: Beaudoin CP, Tonn WM, Prepas EE, Wassenaar LI (1999) Individual specialization and trophic adaptability of northern pike (Esox lucius): an isotope and dietary analysis. Oecologia 120:386–396Google Scholar
  45. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204CrossRefPubMedGoogle Scholar
  46. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Freyhof, Cornol, BerlinGoogle Scholar
  47. Leathwick JR (1995) Climatic relationships of some New-Zealand forest tree species. J Veg Sci 6:237–248CrossRefGoogle Scholar
  48. Lemmens P, Mergeay J, Vanhove T, De Meester L, Declerck SAJ (2014) Suppression of invasive topmouth gudgeon Pseudorasbora parva by native pike Esox lucius in ponds. Aquat Conserv Mar Freshw Ecosyst 25:41–48Google Scholar
  49. Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2:18–22Google Scholar
  50. MacLean J, Magnuson JJ (1977) Species interactions in percid communities. J Fish Res Board Can 34:1941–1951CrossRefGoogle Scholar
  51. Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc Inst Electr Eng 121:1585–1588CrossRefGoogle Scholar
  52. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931CrossRefGoogle Scholar
  53. Margenau TL, Rasmussen PW, Kampa JM (1998) Factors affecting growth of northern pike in small northern Wisconsin lakes. N Am J Fish Manag 18:1998CrossRefGoogle Scholar
  54. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453CrossRefPubMedGoogle Scholar
  55. Michalewicz Z, Fogel DB (2000) How to solve it: modern heuristics. Springer, BerlinCrossRefGoogle Scholar
  56. Mouton AM, Schneider M, Depestele J, Goethals PLM, De Pauw N (2007) Fish habitat modelling as a tool for river management. Ecol Eng 29:305–315CrossRefGoogle Scholar
  57. Mouton AM, Schneider M, Peter A, Holzer G, Müller R, Goethals PLM, De Pauw N (2008) Optimisation of a fuzzy habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland). Ecol Model 215:122–132CrossRefGoogle Scholar
  58. Mouton AM, De Baets B, Goethals PLM (2009a) Knowledge-based versus datadriven fuzzy habitat suitability models for river management. Environ Model Softw 24:982–993CrossRefGoogle Scholar
  59. Mouton AM, Jowett I, Goethals PLM, De Baets B (2009b) Prevalence-adjusted optimisation of fuzzy habitat suitability models for aquatic invertebrate and fish species in New Zealand. Ecol Inform 4:215–225CrossRefGoogle Scholar
  60. Mouton AM, Alcaraz-Hernández JD, De Baets B, Goethals PLM, Martínez-Capel F (2011) Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environ Model Softw 26:615–622CrossRefGoogle Scholar
  61. Mouton AM, Dillen A, Van den Neucker T, Buysse D, Stevens M, Coeck J (2012) Impact of sampling efficiency on the performance of data-driven fish habitat models. Ecol Model 245:94–102CrossRefGoogle Scholar
  62. Musil J, Adámek Z (2007) Piscivorous fishes diet dominated by the Asian cyprinid invader, topmouth gudgeon (Pseudorasbora parva). Biologia 62:488–490CrossRefGoogle Scholar
  63. Onikura N, Nakajima J (2013) Age, growth and habitat use of the topmouth gudgeon, Pseudorasbora parva in irrigation ditches on northwestern Kyushu Island, Japan. J Appl Ichthyol 29:186–192CrossRefGoogle Scholar
  64. Orciari RD (1979) Rotenone resistance of golden shiners from a periodically reclaimed pond. Trans Am Fish Soc 108:641–645CrossRefGoogle Scholar
  65. Pauwels I (2014) Spatially explicit migration models of pike to support river management Doctoral dissertation, Ghent UniversityGoogle Scholar
  66. Persson L, Greenberg L (1990) Juvenile competitive bottlenecks: the perch (Perca fluviatilis)–roach (Rutilus rutilus) interaction. Ecology 71:44–56CrossRefGoogle Scholar
  67. Peters J, De Baets B, Verhoest NEC, Samson R, Degroeve S, De Becker P, Huybrechts W (2007) Random forests as a tool for ecohydrological distribution modelling. Ecol Model 207:304–318CrossRefGoogle Scholar
  68. Pinder AC, Gozlan RE (2003) Sunbleak and topmouth gudgeon: two new additions to Britain’s freshwater fishes. Br Wildl 15:77–83Google Scholar
  69. Pinder AC, Gozlan RE, Britton JR (2005) Dispersal of the invasive topmouth gudgeon, Pseudorasbora parva in the UK: a vector for an emergent infectious disease. Fish Manag Ecol 12:411–414CrossRefGoogle Scholar
  70. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmen tal and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288Google Scholar
  71. Pollux BJA, Korosi A (2006) On the occurrence of the Asiatic cyprinid Pseudorasbora parva in the Netherlands. J Fish Biol 69:1575–1580CrossRefGoogle Scholar
  72. Pressley PH (1980) Parental effort and the evolution of nest-guarding tactics in the threespine stickleback, Gasterosteus aculeatus L. Evolution 35:282–295CrossRefGoogle Scholar
  73. Quyen Tran TN, Jackson MC, Sheath D, Verrecyken H, Britton JR (2015) Patterns of trophic niche divergence between invasive and native fishes in wild communities are predictable from mesocosm studies. J Anim Ecol 84:1071–1080Google Scholar
  74. R Development Core Team (2014) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  75. Rosecchi E, Crivelli AJ, Catsadorakis G (1993) The establishment and impact of Pseudorasbora parva, an exotic fish species introduced into Lake Mikri Prespa (north-western Greece). Aquat Conserv Mar Freshw Ecosyst 3:223–231CrossRefGoogle Scholar
  76. Rosecchi E, Thomas F, Crivelli AJ (2001) Can life-history traits predict the fate of introduced species? A case study on two cyprinid fish in southern France. Freshw Biol 46:845–853CrossRefGoogle Scholar
  77. Schmidt RE, McGurk J (1982) Biology of the European bitterling Rhodeus sericeus (Pisces: Cyprinidae) in the Bronx River, New York, USA: an apparently benign exotic species. Biol Conserv 24:157–162CrossRefGoogle Scholar
  78. Shannon CE, Weaver W (1963) Mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  79. Smyly WJP (1955) On the biology of the stone-loach Nemacheilus brabatula (L.). J Anim Ecol 24:167–186CrossRefGoogle Scholar
  80. Strayer DL, Power ME, Fagan WF, Pickett STA, Belnap J (2003) A classification of ecological boundaries. Bioscience 53:723–729CrossRefGoogle Scholar
  81. Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237CrossRefGoogle Scholar
  82. Van Broekhoven E, Adriaenssens V, De Baets B, Verdonschot PFM (2006) Fuzzy rule-based macroinvertebrate habitat suitability models for running waters. Ecol Model 198:71–84CrossRefGoogle Scholar
  83. Van Kleef HH, Jongejans E (2014) Identifying drivers of pumpkinseed invasiveness using population models. Aquat Invasions 9:315–326CrossRefGoogle Scholar
  84. Verreycken H, Anseeuw D Van, Thuyne G, Quataert P, Belpaire C (2007) The non-indigenous freshwater fishes of Flanders (Belgium): review, status and trends over the last decade. J Fish Biol 71:160–170CrossRefGoogle Scholar
  85. Wolfram-Wais A, Wolfram G, Auer B, Mikschi E, Hain A (1999) Feeding habits of two introduced fish species (Lepomis gibbosus, Pseudorasbora parva) in Neusiedler See (Austria), with special reference to chironomid larvae (Diptera: Chironomidae). Hydrobiologia 408(409):123–129CrossRefGoogle Scholar
  86. Wood SN (2011) mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation. R Package Version 1.7-6. http://www.r-project.org
  87. Xie S, Cui Y, Zhang T, Li Z (2000) Seasonal patterns in feeding ecology of three small fishes in the Biandantang Lake, China. J Fish Biol 57:867–880CrossRefGoogle Scholar
  88. Yee TW, Mitchell ND (1991) Generalized additive-models in plant ecology. J Veg Sci 2:587–602CrossRefGoogle Scholar
  89. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353CrossRefGoogle Scholar
  90. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  91. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityGhentBelgium
  2. 2.Research Group Marine BiologyGhent UniversityGhentBelgium
  3. 3.Research Institute for Nature and Forest (INBO)HoeilaartBelgium
  4. 4.Research Institute for Nature and Forest (INBO)BrusselsBelgium
  5. 5.Provincial Centre of Environmental ResearchGhentBelgium

Personalised recommendations