Biological Invasions

, Volume 18, Issue 1, pp 115–125 | Cite as

The role of waterfowl and fishing gear on zebra mussel larvae dispersal

  • Filipe Banha
  • Irene Gimeno
  • Munia Lanao
  • Vincent Touya
  • Concha Durán
  • Miguel A. Peribáñez
  • Pedro M. Anastácio
Original Paper


The zebra mussel, Dreissena polymorpha (Pallas 1771), is an invasive freshwater species with major negative impacts, promoting changes in ecosystem structure and function and also contributing to economic losses. Navigation has been considered the primary vector of dispersion and little importance has been given to alternative natural (waterbirds) and other human vectors. Using an experimental approach under field conditions, we evaluated and compared zebra mussel dispersal potential by fishing gear (waders and keepnets) versus mallard ducks (Anas platyrhynchos), by examining the adherence and survival rate of zebra mussel larvae on each vector. In addition, we evaluated the survival of zebra mussel larvae under desiccating conditions (i.e., a set of controlled temperatures and relative humidities). Larvae adhered to all types of vectors and survived desiccation under both laboratory and field conditions and thus appear able to be dispersed long distances overland by both ducks and fishing gear. Specifically, on a per-event basis, fishing gear has a higher potential to spread zebra mussel larvae than ducks. Survival was three times higher on human vectors and the number of larvae attached to human vectors was over double of that on the ducks. However, our findings demonstrate that natural vectors, like ducks, can contribute to the transport of zebra mussel larvae at a local scale. Nevertheless, since vectors related to human activity presented a higher potential for transport, it is imperative to continue campaigns to raise the awareness of anglers and boaters as well as continue the implementation of legislation to reduce the risk of zebra mussel dispersal.


Biological invasions Desiccation Dispersal Dreissena polymorpha Fishing gear Waterbirds 



The authors thank the staff of the Zaragoza Council and the APAC Irrigation Community of Mequinenza for their full availability to make this study possible. F. Banha holds a PhD grant from FCT (SFRH/BD/81378/2011). I. Gimeno holds a PhD grant from Aragon Government (B161/11). Finally, the authors thank also Ronaldo Sousa, James T. Carlton and an anonymous reviewer for their helpful comments and suggestions which greatly improved the manuscript.


  1. AEMET, IM (2011) Iberian climate atlas. Agencia Estatal de Meteorología (España) and Instituto de Meteorología (Portugal), Madrid, SpainGoogle Scholar
  2. Águas M, Banha F, Marques M, Anastácio P (2014) Can recently-hatched crayfish cling to moving ducks and be transported during flight? Limnologica 48:65–70CrossRefGoogle Scholar
  3. Altaba CR, Jiménez PJ, López MÁ (2001). El temido mejillón cebra empieza a invadir los ríos españoles desde el curso bajo del Ebro. Quercus 188:50–51Google Scholar
  4. Anastácio PM, Ferreira MP, Banha F, Capinha C, Rabaça JE (2013) Waterbird-mediated passive dispersal is a viable process for crayfish (Procambarus clarkii). Aquat Ecol 48:1–10CrossRefGoogle Scholar
  5. Asensio R, Carreras J (2009) Pesca y mejillón cebra: ¿incompatibles?. Trofeo pesca (octubre-noviembre) 80–83Google Scholar
  6. Bailey RC, Grapentine L, Stewart TJ, Schaner T, Chase ME, Mitchell JS, Coulas RA (1999) Dreissenidae in Lake Ontario: impact assessment at the whole lake and Bay of Quinte spatial scales. J Great Lakes Res 25:482–491CrossRefGoogle Scholar
  7. Banha F, Anastácio PM (2012) Waterbird-mediated passive dispersal of river shrimp Athyaephyra desmaresti. Hydrobiologia 694:197–204CrossRefGoogle Scholar
  8. Bidwell JR (2010) Range expansion of Dreissena polymorpha: a review of major dispersal vectors in Europe and North America, Chap. 6. In: van der Velde G, Rajagopal S, Bij de Vaate A (eds) The zebra mussel in Europe. Backhuys Publishers, Leiden, pp 69–78Google Scholar
  9. Bie T et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747PubMedCrossRefGoogle Scholar
  10. Binimelis R, Monterroso I, Rodríguez-Labajos B (2007) A social analysis of the bioinvasions of Dreissena polymorpha in Spain and Hydrilla verticillata in Guatemala. Environ Manage 40:555–566PubMedCrossRefGoogle Scholar
  11. Boag D (1986) Dispersal in pond snails: potential role of waterfowl. Can J Zool 64:904–909CrossRefGoogle Scholar
  12. Carlton JT (1993) Dispersal mechanisms of the zebra mussel (Dreissena polymorpha), Chap. 40. In: Nalepa TF, Schloesser DW (eds) Zebra mussels: biology, impacts, and control. CRC Press Inc, Boca Raton, pp 677–697Google Scholar
  13. Carlton JT (1996) Pattern, process, and prediction in marine invasion ecology. Biol Conserv 78:97–106CrossRefGoogle Scholar
  14. Connelly NA, O’Neill CR Jr, Knuth BA, Brown TL (2007) Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environ Manage 40:105–112PubMedCrossRefGoogle Scholar
  15. Cramp S, Simmons KEL (1977) Handbook of the birds of Europe, the Middle East and North Africa, vol 1. Oxford University Press, OxfordGoogle Scholar
  16. Crippen RW, Perrier JL (1974) The use of neutral red and Evans blue for live-dead determination of marine plankton. Stain Technol 49:97–104PubMedGoogle Scholar
  17. Durán C, Anadón A (2008) The zebra mussel invasion in Spain and navigation rules. Aquat Invasions 3:315–324CrossRefGoogle Scholar
  18. Durán C, Lanao M, Anadón A, Touyá V (2010) Management strategies for the zebra mussel invasion in the Ebro River basin. Aquat Invasions 5:309–316CrossRefGoogle Scholar
  19. Durán C, Lanao M, Pérez L, Moreu CC, Anadón A, Touya V (2012) Estimación de los costes de la invasión del mejillón cebra en la cuenca del Ebro (periodo 2005–2009). Limnetica 31:213–230Google Scholar
  20. Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494CrossRefGoogle Scholar
  21. Frisch D, Green AJ, Figuerola J (2007) High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat Sci 69(4):568–574CrossRefGoogle Scholar
  22. Gomez J (2005) Donde y como pescar el siluro en España. Tutor, MadridGoogle Scholar
  23. Green AJ, Figuerola J (2005) Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Divers Distrib 11:149–156CrossRefGoogle Scholar
  24. Holgado PM, Menárguez ABB (2012) Aves acuáticas y paisaje fluvial en las riveras de los ríos Ebro, Tajo y Jarama. Características generales Polígonos. Revista de Geografía 151–181Google Scholar
  25. Horvath TG, Lamberti GA (1999) Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport. Freshw Biol 42:69–76CrossRefGoogle Scholar
  26. Johnson LE (1995) Enhanced early detection and enumeration of zebra mussel (Dreissena spp.) veligers using cross-polarized light microscopy. Hydrobiologia 312:139–146CrossRefGoogle Scholar
  27. Johnson LE, Carlton JT (1996) Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77:1686–1690CrossRefGoogle Scholar
  28. Johnson LE, Padilla DK (1996) Geographic spread of exotic species: ecological lessons and opportunities from the invasion of the zebra mussel (Dreissena polymorpha). Biol Conserv 78:23–33CrossRefGoogle Scholar
  29. Johnson LE, Ricciardi A, Carlton JT (2001) Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecol Appl 11(6):1789–1799CrossRefGoogle Scholar
  30. Johnson LE, Bossenbroek JM, Kraft CE (2006) Patterns and pathways in the post-establishment spread of non-indigenous aquatic species: the slowing invasion of North American inland lakes by the zebra mussel. Biol Invasions 8(3):475–489Google Scholar
  31. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  32. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957CrossRefGoogle Scholar
  33. Karatayev AY, Burlakova LE, Padilla DK (2002) Impacts of zebra mussels on aquatic communities and their roles as ecosystem engineers. In: Leppakoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer, Boston, pp 433–446CrossRefGoogle Scholar
  34. Kelly NE, Wantola K, Weisz E, Yan ND (2013) Recreational boats as a vector of secondary spread for aquatic invasive species and native crustacean zooplankton. Biol Invasions 15(3):509–519CrossRefGoogle Scholar
  35. Kraft CE, Sullivan PJ, Karatayev AY, Burlakova LE, Nekola JC, Johnson LE, Padilla DK (2002) Landscape patterns of an aquatic invader: assessing dispersal extent from spatial distributions. Ecol Appl 12:749–759CrossRefGoogle Scholar
  36. Krementz DG, Asante K, Naylor LW (2011) Spring migration of mallards from Arkansas as determined by satellite telemetry. J Fish Wildl Manag 2:156–168CrossRefGoogle Scholar
  37. Legagneux P, Blaize C, Latraube F, Gautier J, Bretagnolle V (2009) Variation in home-range size and movements of wintering dabbling ducks. J Ornithol 150:183–193CrossRefGoogle Scholar
  38. Link PT, Afton AD, Cox RR Jr, Davis BE (2011) Daily movements of female mallards wintering in southwestern Louisiana. Waterbirds 34:422–428CrossRefGoogle Scholar
  39. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group Auckland, New ZealandGoogle Scholar
  40. Mackie G (1991) Biology of the exotic zebra mussel, Dreissena polymorpha, in relation to native bivalves and its potential impact in Lake St. Clair. In: Environmental assessment and habitat evaluation of the upper Great Lakes connecting channels. Springer, pp 251–268Google Scholar
  41. Mayer C, Keats R, Rudstam L, Mills E (2002) Scale-dependent effects of zebra mussels on benthic invertebrates in a large eutrophic lake. J N Am Benthol Soc 21:616–633CrossRefGoogle Scholar
  42. McMahon RF, Ussery TA, Clarke M (1993) Use of emersion as a zebra mussel control method. DTIC DocumentGoogle Scholar
  43. Minchin D, Gollasch S (2002) Vectors: how exotics get around. In: Leppakoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impact and management. Kluwer Academic Publishers, Dordrecht, pp 183–192CrossRefGoogle Scholar
  44. Ministerio de Medio Ambiente y Medio Rural y Marino (2007) Estrategia Nacional para el Control de Mejillón Cebra (Dreissena polymorpha) en EspañaGoogle Scholar
  45. Paukstis GL, Tucker JK, Bronikowski AM, Janzen FJ (1999) Survivorship of aerially-exposed zebra mussels (Dreissena polymorpha) under laboratory conditions. J Freshw Ecol 14:511–517CrossRefGoogle Scholar
  46. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  47. Prange HD, Schmidt-Nielsen K (1970) The metabolic cost of swimming in ducks. J Exp Biol 53:763–777PubMedGoogle Scholar
  48. Rachalewski M, Banha F, Grabowski M, Anastácio PM (2013) Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717:109–117CrossRefGoogle Scholar
  49. Ricciardi A, Serrouya R, Whoriskey FG (1995) Aerial exposure tolerance off zebra and quagga mussels (Bivalvia: Dreissenidae): implications for overland dispersal. Can J Fish Aquat Sci 52:470–477CrossRefGoogle Scholar
  50. Rodrigues D, Fabião A, Figueiredo M, Tenreiro P (2000) Migratory status and movements of the Portuguese Mallard (Anas platyrhynchos). Vogelwarte 40:292–297Google Scholar
  51. Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  52. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: Invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  53. Simberloff D et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66PubMedCrossRefGoogle Scholar
  54. Sousa R, Gutiérrez JL, Aldridge DC (2009) Non-indigenous invasive bivalves as ecosystem engineers. Biol Invasions 11:2367–2385CrossRefGoogle Scholar
  55. Sousa R, Pilotto F, Aldridge DC (2011) Fouling of European freshwater bivalves (Unionidae) by the invasive zebra mussel (Dreissena polymorpha). Freshw Biol 56:867–876CrossRefGoogle Scholar
  56. Sousa R, Novais A, Costa R, Strayer D (2014) Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735:233–251CrossRefGoogle Scholar
  57. Strayer DL (2008) Twenty years of zebra mussels: lessons from the mollusk that made headlines. Front Ecol Environ 7:135–141CrossRefGoogle Scholar
  58. Strayer DL, Smith LC, Hunter DC (1998) Effects of the zebra mussel (Dreissena polymorpha) invasion on the macrobenthos of the freshwater tidal Hudson River. Can J Zool 76:419–425CrossRefGoogle Scholar
  59. Welhun CV (1994) Flight speeds of migrating birds: a test of maximum range speed predictions from three aerodynamic equations. Behav Ecol 5:1–8CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Filipe Banha
    • 1
  • Irene Gimeno
    • 2
  • Munia Lanao
    • 3
  • Vincent Touya
    • 4
  • Concha Durán
    • 4
  • Miguel A. Peribáñez
    • 5
  • Pedro M. Anastácio
    • 1
  1. 1.Departamento de Paisagem, Ambiente e Ordenamento, Escola de Ciências e Tecnologia, Universidade de ÉvoraMARE - Marine and Environmental Sciences CentreÉvoraPortugal
  2. 2.Instituto Pirenaico de Ecología – CSICZaragozaSpain
  3. 3.TragsatecZaragozaSpain
  4. 4.Área de Calidad de las AguasConfederación Hidrográfica del EbroZaragozaSpain
  5. 5.Grupo de Investigación Gobierno de Aragón: Restauración ecológica, Departamento de Patología AnimalUniversidad de ZaragozaZaragozaSpain

Personalised recommendations