Advertisement

Biological Invasions

, Volume 17, Issue 12, pp 3547–3561 | Cite as

Impact of Ligustrum lucidum on the soil seed bank in invaded subtropical seasonally dry woodlands (Córdoba, Argentina)

  • A. E. FerrerasEmail author
  • M. A. Giorgis
  • P. A. Tecco
  • M. R. Cabido
  • G. Funes
Original Paper

Abstract

The impact of invasive species on below ground flora may differ from that on the above ground vegetation. Recent reviews of invaded and native communities emphasize the need for more comprehensive information on the impacts of plant invasion on soil seed banks. Ligustrum lucidum is one of the most important invasive woody species in several ecosystems of Argentina; however, its impact on soil seed bank communities has not been studied. Here we analyzed differences in species richness, total seed density and species composition (total, native and exotic species) in the soil seed bank of native and invaded woodlands, in two different seasons. We also analyzed differences in similarity between standing vegetation and soil seed banks of both woodland types. The study was carried out in the Chaco Serrano woodlands of Córdoba, central Argentina. Our main results indicate differences in L. lucidum woodland composition and a reduction in both richness and total density of species in the soil seed bank compared to the native woodlands, independently of the sampling season. Moreover, a higher abundance of certain exotic species in the soil seed bank was observed in L. lucidum woodlands, particularly in spring. Finally, low similarity between soil seed bank and the established vegetation was observed in both woodland types. From a management perspective, it seems that passive restoration from soil seed banks of L. lucidum might be coupled with active addition of some native woody species and control of other exotic species.

Keywords

Alien species Exotic species Invaded soil seed banks Soil seed bank-vegetation relationship Species composition Woody invasion 

Notes

Acknowledgments

We thank Jorgelina Brasca for assisting with the English version of the manuscript, and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 0456 CO) and Secretaría de Ciencia y Técnica, for financial support. AEF, MG, PAT, MC and GF are CONICET researchers.

Supplementary material

10530_2015_977_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)
10530_2015_977_MOESM2_ESM.pdf (545 kb)
Supplementary material 2 (PDF 546 kb)
10530_2015_977_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 kb)

References

  1. Aguirre-Acosta N, Kowaljow E, Aguilar R (2014) Reproductive performance of the invasive tree Ligustrum lucidum in a subtropical dry forest: does habitat fragmentation boost or limit invasion? Biol Invasions 16:1397–1410. doi: 10.1007/s10530-013-0577-x CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  3. Aragón R, Sardans J, Peñuelas J (2014) Soil enzymes associated with carbon and nitrogen cycling in invaded and native secondary forests of northwestern Argentina. Plant Soil 384:169–183. doi: 10.1007/s11104-014-2192-8 CrossRefGoogle Scholar
  4. Aslan CE, Zavaleta ES, Croll D, Tershy B (2012) Effects of native and non-native vertebrate mutualists on plants. Conserv Biol 26:778–789. doi: 10.1111/j.1523-1739.2012.01885.x CrossRefPubMedGoogle Scholar
  5. Ayup MM, Montti L, Aragón R, Grau HR (2014) Invasion of Ligustrum lucidum (Oleaceae) in the southern Yungas: changes in habitat properties and decline in bird diversity. Acta Oecol 54:72–81. doi: 10.1016/j.actao.2013.03.006 CrossRefGoogle Scholar
  6. Baskin CC, Baskin JM (1998) Seeds. Ecology, biogeography and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  7. Buonopane M, Snider G, Kerns BK, Doescher PS (2013) Complex restoration challenges: weeds, seeds, and roads in a forested Wildland Urban Interface. For Ecol Manag 295:87–96. doi: 10.1016/j.foreco.2013.01.013 CrossRefGoogle Scholar
  8. Cioccale M (1999) Investigación geomorfológica de cuencas serranas. Estudio geomorfológico integral: Morfodinámica, morfometría y morfogénesis del flanco oriental de las Sierras Chicas de Córdoba. Ph.D. Thesis. National University of CórdobaGoogle Scholar
  9. Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  10. Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166. doi: 10.1034/j.1600-0706.2002.970201.x CrossRefGoogle Scholar
  11. D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713. doi: 10.1046/j.1526-100X.2002.01051.x CrossRefGoogle Scholar
  12. De Fina AL (1992) Aptitud agroclimática de la república Argentina. Academia Nacional de Agronomía y Veterinaria, Buenos AiresGoogle Scholar
  13. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  14. Dremann CC, Shaw M (2002) Releasing the native seedbank: an innovative approach to restoring a coastal california ecosystem. Ecol Restor 20:103–107. doi: 10.3368/er.20.2.103 CrossRefGoogle Scholar
  15. Fenner M (1998) The phenology of growth and reproduction in plants. Perspect Plant Ecol Evol Syst 1:78–91. doi: 10.1078/1433-8319-00053 CrossRefGoogle Scholar
  16. Ferreras AE, Torres C, Galetto L (2008) Fruit removal of an invasive exotic species (Ligustrum lucidum) in a fragmented landscape. J Arid Environ 72:1573–1580. doi: 10.1016/j.jaridenv.2008.03.015 CrossRefGoogle Scholar
  17. Fisher JL, Loneragan WA, Dixon K, Veneklaas EJ (2009) Soil seed bank compositional change constrains biodiversity in an invaded species-rich woodland. Biol Conserv 142:256–269. doi: 10.1016/j.biocon.2008.10.019 CrossRefGoogle Scholar
  18. Frieswyk CB, Zedler JB (2006) Do seed banks confer resilience to coastal wetlands invaded by Typha x glauca? Can J Bot 84:1882–1893. doi: 10.1139/B06-100 CrossRefGoogle Scholar
  19. Funes G, Basconcelo S, Díaz S, Cabido M (2001) Edaphic patchiness influences grassland regeneration from the soil seed-bank in mountain grasslands of central Argentina. Aust Ecol 26:205–212. doi: 10.1046/j.1442-9993.2001.01102.x CrossRefGoogle Scholar
  20. Furey C, Tecco PA, Perez-Harguindeguy N, Giorgis MA, Grossi M (2014) The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of central Argentina. Acta Oecol 54:13–20. doi: 10.1016/j.actao.2012.12.005 CrossRefGoogle Scholar
  21. Gaertner M, Richardson DM, Privett SDJ (2011) Effects of alien plants on ecosystem structure and functioning and implications for restoration: insights from three degraded sites in South African fynbos. Environ Manage 48:57–69. doi: 10.1007/s00267-011-9675-7 CrossRefPubMedGoogle Scholar
  22. Gavier GI, Bucher EH (2004) Deforestación de las Sierras Chicas de Córdoba (Argentina) en el período 1970–1997. Miscelánea No 101. Academia Nacional de Ciencias, CórdobaGoogle Scholar
  23. Gavier-Pizarro GI, Kuemmerle T, Hoyos LE, Stewart SI, Huebner CD, Keuler NS, Radeloff VC (2012) Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina. Remote Sens Environ 122:134–145. doi: 10.1016/j.rse.2011.09.023 CrossRefGoogle Scholar
  24. Giantomasi A, Tecco PA, Funes G, Gurvich DE, Cabido M (2008) Canopy effects of the invasive shrub Pyracantha angustifolia on seed bank composition, richness and density in a montane shrubland (Córdoba, Argentina). Austral Ecol 33:68–77. doi: 10.1111/j.1442-9993.2007.01791.x CrossRefGoogle Scholar
  25. Giorgis MA, Cingolani AM, Chiarini F, Chiapella J, Barboza G, Ariza Espinar L, Morero R, Gurvich D, Tecco PA, Subils R, Cabido M (2011) Composición florística del Bosque Chaqueño Serrano de la Provincia de Córdoba, Argentina. Kurtziana 36:9–43Google Scholar
  26. Gioria M, Osborne B (2009a) The impact of Gunnera tinctoria (Molina) Mirbel invasions on soil seed bank communities. J Plant Ecol 2:153–167. doi: 10.1093/jpe/rtp013 CrossRefGoogle Scholar
  27. Gioria M, Osborne B (2009b) Assessing the impact of plant invasions on soil seed bank communities: use of univariate and multivariate statistical approaches. J Veg Sci 20:547–556. doi: 10.1111/j.1654-1103.2009.01054.x CrossRefGoogle Scholar
  28. Gioria M, Osborne B (2010) Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol Invasions 12:1671–1683. doi: 10.1007/s10530-009-9580-7 CrossRefGoogle Scholar
  29. Gioria M, Pyšek P, Moravcova L (2012) Soil seed banks in plant invasions: promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84:327–350Google Scholar
  30. Gioria M, Jarošík V, Pyšek P (2014) Impact of invasions by alien plants on soil seed bank communities: emerging patterns. Perspect Plant Ecol Evol Syst 16:132–142. doi: 10.1016/j.ppees.2014.03.003 CrossRefGoogle Scholar
  31. Godoy O, Castro-Díez P, Valladares F, Costa-Tenorio M (2009) Different flowering phenology of alien invasive species in Spain: evidence for the use of an empty temporal niche? Plant Biol 11:803–811. doi: 10.1111/j.1438-8677.2008.00185.x CrossRefPubMedGoogle Scholar
  32. González-Muñoz N, Costa-Tenorio M, Espigares T (2012) Invasion of alien Acacia dealbata on Spanish Quercus robur forests: impact on soils and vegetation. For Ecol Manage 269:214–221. doi: 10.1016/j.foreco.2011.12.026 CrossRefGoogle Scholar
  33. Gurvich DE, Tecco P, Díaz S (2005) Plant invasions in undisturbed ecosystems: the triggering attribute approach. J Veg Sci 16:723–728. doi: 10.1111/j.1654-1103.2005.tb02415.x CrossRefGoogle Scholar
  34. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9Google Scholar
  35. Holmes PM (2002) Depth distribution and composition of seed-banks in alien-invaded and uninvaded fynbos vegetation. Austral Ecol 27:110–120. doi: 10.1046/j.1442-9993.2002.01164.x CrossRefGoogle Scholar
  36. Holmes PM, Cowling RM (1997) Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant Ecol 133:107–122. doi: 10.1023/A:1009734026612 CrossRefGoogle Scholar
  37. Hopfensperger KN (2007) A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116:1438–1448. doi: 10.1111/j.2007.0030-1299.15818.x CrossRefGoogle Scholar
  38. Hoyos LE, Gavier-Pizarro GI, Kuemmerle T, Bucher EH, Radeloff VC, Tecco PA (2010) Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina. Biol Invasions 12:3261–3275. doi: 10.1007/s10530-010-9720-0 CrossRefGoogle Scholar
  39. Kuebbing SE, Nuñez MA (2014) Negative, neutral, and positive interactions among nonnative plants: patterns, processes and management implications. Glob Change Biol 21:926–934. doi: 10.1111/gcb.12711 CrossRefGoogle Scholar
  40. Kundel D, van Kleunen M, Dawson W (2014) Invasion by Solidago species has limited impacts on soil seed bank communities. Basic Appl Ecol 15:573–580. doi: 10.1016/j.baae.2014.08.009 CrossRefGoogle Scholar
  41. Li B, Hao Z, Bin Y, Zhang J, Wang M (2012) Seed rain dynamics reveals strong dispersal limitation, different reproductive strategies and responses to climate in a temperate forest in northeast China. J Veg Sci 23:271–279. doi: 10.1111/j.1654-1103.2011.01344.x CrossRefGoogle Scholar
  42. Lichstein JW, Grau HR, Aragón R (2004) Recruitment limitation in secondary forests dominated by an exotic tree. J Veg Sci 15:721–728. doi: 10.1111/j.1654-1103.2004.tb02314.x CrossRefGoogle Scholar
  43. Long RL, Steadman KJ, Panetta FD, Adkins SW (2009) Soil type does not affect seed ageing when soil water potential and temperature are controlled. Plant Soil 320:131–140. doi: 10.1007/s11104-008-9878-8 CrossRefGoogle Scholar
  44. Luti R, Bertrán de Solís MA, Galera FM, Müller de Ferreira N, Berzal M, Nores M, Herrera MA, Barrera JC (1979) Vegetación. In: Vázquez J, Miatello R, Roque M (eds) Geografía Física de la provincia de Córdoba. Bolt, Buenos Aires, pp 297–368Google Scholar
  45. Marchante H, Freitas H, Hoffmann JH (2011) The potential role of seed banks in the recovery of dune ecosystems after removal of invasive plant species. Appl Veg Sci 14:107–119. doi: 10.1111/j.1654-109X.2010.01099.x CrossRefGoogle Scholar
  46. Mason T, French K, Russell K (2007) Moderate impacts of plant invasion and management regimes in coastal hind dune seed banks. Biol Conserv 134:428–439. doi: 10.1016/j.biocon.2006.08.032 CrossRefGoogle Scholar
  47. Mazia CN, Chaneton EJ, Ghersa CM, León RJC (2001) Limits to tree species invasion in pampean grassland and forest plant communities. Oecologia 128:594–602. doi: 10.1007/s004420100709 CrossRefGoogle Scholar
  48. Meers TL, Enright NJ, Bell TL, Kasel S (2012) Deforestation strongly affects soil seed banks in eucalypt forests: generalisations in functional traits and implications for restoration. For Ecol Manage 266:94–107. doi: 10.1016/j.foreco.2011.11.004 CrossRefGoogle Scholar
  49. Montaldo NH (1993) Avian dispersal and reproductive success of two species of Ligustrum (Oleaceae) in a subtropical forest relict in Argentina. Rev Chil Hist Nat 66:75–85Google Scholar
  50. R Development Core Team (2012) R: a language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 17 Mar 2015
  51. Rauschert ESJ, Shea K (2012) Invasional interference due to similar inter-and intraspecific competition between invaders may affect management. Ecol Appl 22:1413–1420. doi: 10.1890/11-2107.1 CrossRefPubMedGoogle Scholar
  52. Reyna DL, Wall LG (2014) Revision of two colorimetric methods to quantify glomalin-related compounds in soil subjected to different managements. Biol Fertil Soils 50:395–400. doi: 10.1007/s00374-013-0834-2 CrossRefGoogle Scholar
  53. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809. doi: 10.1111/j.1472-4642.2011.00782.x CrossRefGoogle Scholar
  54. Richardson DM, Allsopp N, D’Antonio C, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualim. Biol Rev 75:65–93. doi: 10.1111/j.1469-185X.1999.tb00041.x CrossRefPubMedGoogle Scholar
  55. Scott K, Setterfield S, Douglas M, Andersen A (2010) Soil seed banks confer resilience to savanna grass-layer plants during seasonal disturbance. Acta Oecol 36:202–210. doi: 10.1016/j.actao.2009.12.007 CrossRefGoogle Scholar
  56. Shen YX, Liu WL, Li YH, Guan HL (2014) Large sample area and size are needed for forest soil seed bank studies to ensure low discrepancy with standing vegetation. PLoS ONE 9:e105235. doi: 10.1371/journal.pone.0105235 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919. doi: 10.1111/j.1461-0248.2006.00939.x CrossRefPubMedGoogle Scholar
  58. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32. doi: 10.1023/A:1010086329619 CrossRefGoogle Scholar
  59. Skowronek S, Terwei A, Zerbe S, Mölder I, Annighöfer P, Kawaletz H, Ammer C, Heilmeier H (2014) Regeneration potential of floodplain forests under the influence of nonnative tree species: soil seed bank analysis in northern Italy. Restor Ecol 22:22–30. doi: 10.1111/rec.12027 CrossRefGoogle Scholar
  60. Tecco PA, Gurvich DE, Díaz S, Pérez-Haguindeguy N, Cabido M (2006) Positive interaction between invasive plants: the influence of Pyracantha angustifolia on the recruitment of native and exotic woody species. Austral Ecol 31:293–300. doi: 10.1111/j.1442-9993.2006.01557.x CrossRefGoogle Scholar
  61. Tecco PA, Díaz S, Gurvich DE, Pérez-Harguinteguy N, Cabido M, Bertone G (2007) Experimental evidence of positive association between exotic woody species: facilitation by Pyracantha angustifolia on Ligustrum lucidum sapling survival. Appl Veg Sci 10:211–218. doi: 10.1111/j.1654-109X.2007.tb00519.x CrossRefGoogle Scholar
  62. Tecco PA, Urcelay C, Díaz S, Cabido M, Pérez-Harguinteguy N (2013) Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Austral Ecol 38:443–451. doi: 10.1111/j.1442-9993.2012.02428.x CrossRefGoogle Scholar
  63. Tererai F, Gaertner M, Jacobs SM, Richardson DM (2014) Resilience of invaded riparian landscapes: the potential role of soil-stored seed banks. Environ Manage 55:86–99. doi: 10.1007/s00267-014-0374-z CrossRefPubMedGoogle Scholar
  64. Thompson K, Grime JP (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67:893–921. doi: 10.2307/2259220 CrossRefGoogle Scholar
  65. Vilà M, Gimeno I (2007) Does invasion by an alien plant species affect the soil seed bank? J Veg Sci. doi: 10.1111/j.1654-1103.2007.tb02554.x Google Scholar
  66. Vosse S, Esler KJ, Richardson DM, Holmes PM (2008) Can riparian seed banks initiate restoration after alien plant invasion? Evidence from the Western Cape, South Africa. S Afr J Bot 74:432–444. doi: 10.1016/j.sajb.2008.01.170 CrossRefGoogle Scholar
  67. Wolkovich EM, Cleland EE (2011) The phenology of plant invasions: a community ecology perspective. Front Ecol Environ 9:287–294. doi: 10.1890/100033 CrossRefGoogle Scholar
  68. Yang S, Ferrari MJ, Shea K (2011) Pollinator behavior mediates negative interactions between two congeneric invasive plant species. Am Nat 177:110–118. doi: 10.1086/657433 CrossRefPubMedGoogle Scholar
  69. Zeballos SR, Giorgis MA, Cingolani AM, Cabido M, Whitwhort-Hulse JI, Gurvich D (2014) Do alien and native tree species from central Argentina differ in their water transport strategy? Austral Ecol 39:984–991. doi: 10.1111/aec.12171 CrossRefGoogle Scholar
  70. Zuloaga FO, Morrone O, Belgrano MJ (2008) Catalogue of the vascular plants of the southern cone (Argentina, southern Brazil, Chile, Paraguay and Uruguay). Missouri Botanical Garden Press, MissouriGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. E. Ferreras
    • 1
    Email author
  • M. A. Giorgis
    • 1
    • 2
  • P. A. Tecco
    • 1
    • 2
  • M. R. Cabido
    • 1
    • 2
  • G. Funes
    • 1
    • 2
  1. 1.Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET)Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Cátedra de Biogeografía, Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations