Biological Invasions

, Volume 18, Issue 5, pp 1235–1246 | Cite as

Range expansion and increasing impact of the introduced wasp Aphidiusmatricariae Haliday on sub-Antarctic Marion Island

Original Paper

Abstract

Despite the significance of biological invasions in the Antarctic region, understanding of the rates of spread and impact of introduced species is limited. Such information is necessary to develop and to justify management actions. Here we quantify rates of spread and changes in impact of the introduced wasp Aphidius matricariae Haliday, which parasitizes the invasive aphid Rhopalosiphum padi (L.), on sub-Antarctic Marion Island, to which the wasp was introduced in ca. 2001. Between 2006 and 2011, the wasp had colonised all coastal sites, with an estimated rate of spread of 3–5 km year−1. Adult abundance doubled over the period, while impact, measured as mean percentage parasitism of R. padi, had increased from 6.9 to 30.1 %. Adult wasps have thermal tolerances (LT50s) of between −18 and 33.8 °C, with a crystallization temperature of −22.9 °C, and little tolerance (ca. 37 h) of low humidity at 10 °C. Desiccation intolerance is probably limiting for the adult wasps, while distribution of their aphid host likely sets ultimate distributional limits, especially towards higher elevations where R. padi is absent, despite the presence of its host grass on the island, Poa cookii (Hook. f.). Rising temperatures are benefitting P. cookii, and will probably do the same for both R. padi and A. matricariae. Our study shows that once established, spread of introduced species on the island may be rapid, emphasizing the importance of initial quarantine.

Keywords

Dispersal Hemiptera Hymenoptera Impact Physiological tolerance Spread 

Supplementary material

10530_2015_967_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (docx 18 kb)

References

  1. Abraham S, Somers MJ, Chown SL (2011) Seasonal, altitudinal and host plant-related variation in the abundance of aphids (Insecta, Hemiptera) on sub-Antarctic Marion Island. Polar Biol 34:513–520CrossRefGoogle Scholar
  2. Adabi ST, Talebi AA, Fathipour Y, Zamani AA (2010) Life history and demographic parameters of Aphis fabae (Hemiptera: Aphididae) and its parasitoid Aphidius matricariae (Hymenoptera: Aphidiidae) on four sugar beet cultivars. Acta Entomol Serb 15:61–73Google Scholar
  3. Allen JA, Clusella-Trullas S, Chown SL (2012) The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenrbionidae) and Cyrtobagous salviniae (Curculionidae). J Insect Physiol 58:669–678CrossRefPubMedGoogle Scholar
  4. Bergstrom DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pedersen TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73–81CrossRefGoogle Scholar
  5. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefPubMedGoogle Scholar
  6. Boivin G, Hance Th, Brodeur J (2012) Aphid parasitoids in biological control. Can J Plant Sci 92:1–12CrossRefGoogle Scholar
  7. Brandjes GJ, Block W, Ernsting G (1999) Spatial dynamics of two introduced species of carabid beetles on the sub-Antarctic island of South Georgia. Polar Biol 21:326–334CrossRefGoogle Scholar
  8. Chevrier M, Frenot P, Vernon Y (1997) Potential effects of two alien insects on a sub-Antarctic wingless fly in the Kerguelen islands. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 424–431Google Scholar
  9. Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA (2015) The changing form of Antarctic biodiversity. Nature 522:431–438CrossRefPubMedGoogle Scholar
  10. Chown SL, Crafford JE (1992) Microhabitat temperatures at Marion Island (46o54’S 37o45’E). S Afr J Antarct Res 22:51–58Google Scholar
  11. Chown SL, Gremmen NJM, Gaston KJ (1998) Ecological biogeography of southern ocean islands: species-area relationships, human impacts, and conservation. Am Nat 152:562–575CrossRefPubMedGoogle Scholar
  12. Chown SL, Froneman PW (2008) The Prince Edward Islands. Land-Sea interactions in a changing ecosystem. Sun Press, StellenboschGoogle Scholar
  13. Chown SL, Language K (1994) Recently established Diptera and Lepidoptera on sub-Antarctic Marion Island. Afr Entomol 2:57–76Google Scholar
  14. Chown SL, Rodrigues ASL, Gremmen NJM, Gaston KJ (2001) World Heritage status and conservation of southern ocean islands. Conserv Biol 15:550–557CrossRefGoogle Scholar
  15. Colinet H, Hance Th (2010) Interspecific variation in the response to low temperature storage in different aphid parasitoids. Annal Appl Biol 156:147–156CrossRefGoogle Scholar
  16. Convey P, Key RS, Key RJD, Belchier M, Waller CL (2011) Recent range expansions in non-native predatory beetles on sub-Antarctic South Georgia. Polar Biol 34:597–602CrossRefGoogle Scholar
  17. Convey P, Lebouvier M (2009) Environmental change and human impacts on terrestrial ecosystems of the sub-Antarctic islands between their discovery and the mid-twentieth century. Pap Proc R Soc Tasmania 143:33–44Google Scholar
  18. Crafford JE, Scholtz CH, Chown SL (1986) The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen Biogeographical Province. S Afr J Antarct Res 16:41–84Google Scholar
  19. Crawley MJ (2013) The R book, 2nd edn. Wiley, ChichesterGoogle Scholar
  20. Deere JA, Sinclair BJ, Marshall DJ, Chown SL (2006) Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. J Insect Physiol 52:693–700CrossRefPubMedGoogle Scholar
  21. de Villiers MS, Cooper J, Carmichael N, Glass JP, Liddle GM, McIvor E, Micol T, Roberts A (2005) Conservation management at southern ocean islands: towards the development of best-practice guidelines. Polarforschung 75:113–131Google Scholar
  22. Finlay KJ, Luck JE (2011) Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop-vector-virus pathosystem. Agric Ecosyst Environ 144:405–421CrossRefGoogle Scholar
  23. Frenot Y, Gloaguen JC, Masse L, Lebouvier M (2001) Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol Conserv 101:33–50CrossRefGoogle Scholar
  24. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72CrossRefPubMedGoogle Scholar
  25. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, OxfordGoogle Scholar
  26. Goldson SL, Proffitt JR, McNeill MR, Baird DB (1999) Linear patterns of dispersal and build up of the introduced parasitoid Microctonus hyperodae (Hymenoptera: Braconidae) in Canterbury, New Zealand. Bull Entomol Res 89:347–353Google Scholar
  27. Grandgirard J, Hoddle MS, Petit JN, Roderick GK, Davies N (2008) Engineering an invasion: classical biological control of the glassy-winged sharpshooter, Homalodisca vitripennis, by the egg parasitoid Gonatocerus ashmeadi in Tahiti and Moorea, French Polynesia. Biol Invas 10:135–148CrossRefGoogle Scholar
  28. Gremmen NJM (1997) Changes in the vegetation of sub-Antarctic Marion Island resulting from introduced vascular plants. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 417–423Google Scholar
  29. Gremmen NJM, Chown SL, Marshall DJ (1998) Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Biol Conserv 85:223–231CrossRefGoogle Scholar
  30. Gremmen NJM, Smith VR (2008) Terrestrial vegetation and dynamics. In: Chown SL, Froneman PW (eds) The Prince Edward Islands. Land-Sea interactions in a changing ecosystem. Sun Press, Stellenbosch, pp 215–244Google Scholar
  31. Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126CrossRefPubMedGoogle Scholar
  32. Hänel C, Chown SL (1998) The impact of a small, alien invertebrate on a sub-Antarctic terrestrial ecosystem: Limnophyes minimus (Diptera, Chironomidae) at Marion Island. Polar Biol 20:99–106CrossRefGoogle Scholar
  33. Houghton M, McQuillan PB, Bergstrom DM, Frost L, van den Hoff J, Shaw JD (2016) Pathways of alien invertebrate transfer to the Antarctic region. Polar Biol 39:23–33. doi:10.1007/s00300-014-1599-2 CrossRefGoogle Scholar
  34. Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239CrossRefGoogle Scholar
  35. Hullé M, Pannetier D, Simon J-C, Vernon P, Frenot Y (2003) Aphids of sub-Antarctic Îles Crozet and Kerguelen: species diversity, host range and spatial distribution. Antarct Sci 15:203–209CrossRefGoogle Scholar
  36. Jones MGW, Ryan PG (2010) Evidence of mouse attacks on albatross chicks on sub-Antarctic Marion Island. Antarct Sci 22:39–42CrossRefGoogle Scholar
  37. Kellermann V, Loeschcke V, Hoffmann AA, Flojgaard C, Svenning JC, Loeschcke V (2012) Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377–3389CrossRefPubMedGoogle Scholar
  38. Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62:314–334CrossRefGoogle Scholar
  39. Klok CJ, Chown SL (1998) Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-Antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). J Insect Physiol 44:615–628CrossRefPubMedGoogle Scholar
  40. Langhof M, Meyhöfer R, Poehling H-M, Gathmann A (2005) Measuring the field dispersal of Aphidius colemani (Hymenoptera: Braconidae). Agric Ecosyst Environ 107:137–143CrossRefGoogle Scholar
  41. Lebouvier M, Laparie M, Hullé M, Marais A, Cozic Y, Lalouette L, Vernon P, Candresse T, Frenot Y, Renault D (2011) The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol Invas 13:1195–1208CrossRefGoogle Scholar
  42. Lee JE, Chown SL (2009) Breaching the dispersal barrier to invasion: quantification and management. Ecol Appl 19:1944–1959CrossRefPubMedGoogle Scholar
  43. Lee JE, Janion C, Marais E, VanVuuren BJ, Chown SL (2009) Physiological tolerances account for range limits and abundance structure in an invasive slug. Proc R Soc B 276:1459–1468CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lee JE, Slabber S, Jansen van Vuuren B, Van Noort S, Chown SL (2007) Colonisation of sub-Antarctic Marion Island by a non-indigenous aphid parasitoid Aphidius matricariae (Hymenoptera, Braconidae). Polar Biol 30:1195–1201CrossRefGoogle Scholar
  45. le Roux PC (2008) Climate and climate change. In: Chown SL, Froneman PW (eds) The Prince Edward Islands. Land-Sea interactions in a changing ecosystem. Sun Press, Stellenbosch, pp 39–64Google Scholar
  46. le Roux PC, McGeoch MA (2008) Rapid range expansion and community reorganization in response to warming. Glob Change Biol 14:2950–2962CrossRefGoogle Scholar
  47. le Roux PC, Ramaswiela T, Kalwij JM, Shaw JD, Ryan PG, Treasure AM, McClelland GTW, McGeoch MA, Chown SL (2013) Human activities, propagule pressure and alien plants in the sub-Antarctic: tests of generalities and evidence in support of management. Biol Conserv 161:18–27CrossRefGoogle Scholar
  48. McGeoch MA, Shaw JD, Terauds A, Lee JE, Chown SL (2015) Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Global Environ Change 32:108–125CrossRefGoogle Scholar
  49. Petit JN, Hoddle MS, Grandgirard J, Roderick GK, Davies N (2008) Short-distance dispersal behavior and establishment of the parasitoid Gonatocerus ashmeadi (Hymenoptera: Mymaridae) in Tahiti: implications for its use as a biological control agent against Homalodisca vitripennis (Hemiptera: Cicadellidae). Biol Control 45:344–352CrossRefGoogle Scholar
  50. Preuss S, Low M, Cassel-Lundhagen A, Berggren Ä (2014) Evaluating range-expansion models for calculating nonnative species’ expansion rate. Ecol Evol 4:2812–2822CrossRefPubMedPubMedCentralGoogle Scholar
  51. Reed HC, Reed DK, Elliott NC (1992) Comparative life table statistics of Diaeretiella rapae and Aphidius matricariae on the Russian wheat aphid. Southwestern Entomol 17:307–312Google Scholar
  52. Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83:263–282CrossRefGoogle Scholar
  53. Schönrogge K, Begg T, Williams R, Melika G, Randle Z, Stone GN (2012) Range expansion and enemy recruitment by eight alien gall wasp species in Britain. Insect Conserv Divers 5:298–311CrossRefGoogle Scholar
  54. Shaw JD (2013) Southern ocean islands invaded: conserving biodiversity in the world’s last wilderness. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas. Springer, Dordrecht, pp 449–470CrossRefGoogle Scholar
  55. Simberloff D, Martin JL, Genovesi P et al (2013) Impacts of biological invasions: What’s what and the way forward. Trends Ecol Evol 28:58–66CrossRefPubMedGoogle Scholar
  56. Smith VR (2007) Introduced slugs and indigenous caterpillars as facilitators of carbon and nutrient mineralisation on a sub-Antarctic island. Soil Biol Biochem 39:709–713CrossRefGoogle Scholar
  57. Smith VR, Avenant NL, Chown SL (2002) The diet of house mice on a sub-Antarctic island. Polar Biol 25:703–715Google Scholar
  58. Terblanche JS, Hoffmann AA, Mitchell KA et al (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725CrossRefPubMedGoogle Scholar
  59. Thrall PH, Oakeshott JG, Fitt G et al (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4:200–215CrossRefPubMedPubMedCentralGoogle Scholar
  60. Treasure AM, Chown SL (2013) Contingent absences account for range limits but not the local abundance structure of an invasive springtail. Ecography 36:146–156CrossRefGoogle Scholar
  61. Weldon CW, Terblanche JS, Chown SL (2011) Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J Thermal Biol 36:479–485CrossRefGoogle Scholar
  62. Whinam J, Chilcott N, Bergstrom DM (2005) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Conserv 121:207–219CrossRefGoogle Scholar
  63. Worland R, Block W, Rothery P (1992) Survival of sub-zero temperatures by two South Georgian beetles (Coleoptera, Perimylopidae). Polar Biol 11:607–613CrossRefGoogle Scholar
  64. Worland MR, Janion C, Treasure AM, Chown SL (2010) Pre-freeze mortality in three species of aphids from sub-Antarctic Marion Island. J Thermal Biol 35:255–262CrossRefGoogle Scholar
  65. Yu DS, van Achterberg K, Horstmann K (2005) World Ichneumonoidea 2004. Taxonomy, Biology, Morphology and Distribution. CD/DVD. Taxapad, Vancouver, Canada. http://www.taxapad.com
  66. Zamani AA, Talebi A, Fathipour Y, Baniameri V (2007) Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environ Entomol 36:263–271CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
  2. 2.School of Biological SciencesMonash UniversityVictoriaAustralia

Personalised recommendations