Biological Invasions

, Volume 17, Issue 11, pp 3337–3350 | Cite as

Assessing current and future risks of invasion by the “green cancer” Miconia calvescens

  • Noelia González-Muñoz
  • Céline Bellard
  • Camille Leclerc
  • Jean-Yves Meyer
  • Franck Courchamp
Original Paper


Miconia calvescens D.C. appears in the list “100 of the world’s worst invasive alien species”, devised by the IUCN. It is considered the worst plant pest in Hawaii and French Polynesia. This species has also invaded the rain forest of Australia, New Caledonia and Sri Lanka, where it is extremely difficult to eradicate. To assess the susceptibility to invasion by M. calvescens in new areas, we investigated the current and future suitable areas for this aggressive invader worldwide. We also assessed the protected areas currently at risk of invasion by considering botanic gardens as a proxy for likelihood of introduction, since most successful invasions by M. calvescens originated from private or public garden escapees. Our results predict that about 7.2 % of total landmass is currently suitable for M. calvescens, with 54.8 % outside the native range including 44.5 % within tropical forests in the southern hemisphere. We identified 91 countries, 400 islands, and up to 364 protected areas with suitable environments outside of M. calvescens native range. By the 2080s, worldwide land suitable for M. calvescens is predicted to be reduced by up to half due to climate change. This decrease is mainly predicted to occur in M. calvescens native ranges as well as in countries where the presence of the species has not yet been reported. In contrast, the invaded range is predicted to slightly decrease, showing an interesting example of a double negative effect of climate change on the distribution of an invader. Our work provides information for land managers and stakeholders that can help to avert the introduction and spread of M. calvescens in their territories. We also emphasize the importance of risk assessments on the living collections of botanic gardens, as a common source of escapees of invasive plants.


Miconia calvescens Climate change Species distribution model Botanic gardens Protected areas 

Supplementary material

10530_2015_960_MOESM1_ESM.docx (20 kb)
Appendix S1. List of countries belonging to each range. (DOCX 20 kb)
10530_2015_960_MOESM2_ESM.docx (18 kb)
Appendix S2. Importance of each variable included in the model. (DOCX 17 kb)
10530_2015_960_MOESM3_ESM.docx (16 kb)
Appendix S3. Suitability cut-offs for current and future climatic conditions. (DOCX 15 kb)
10530_2015_960_MOESM4_ESM.docx (23 kb)
Appendix S4. Boxplots of TSS, ROC and KAPPA values. (DOCX 22 kb)
10530_2015_960_MOESM5_ESM.docx (177 kb)
Appendix S5. Suitability versus the value of each variable included in the model. (DOCX 177 kb)
10530_2015_960_MOESM6_ESM.docx (23 kb)
Appendix S6. List of islands currently under higher risk of invasion by M. calvescens. (DOCX 22 kb)
10530_2015_960_MOESM7_ESM.doc (120 kb)
Appendix S7. List of the botanic gardens. (DOC 119 kb)


  1. Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141:612–619CrossRefPubMedGoogle Scholar
  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 46:1223–1232CrossRefGoogle Scholar
  3. Araújo MB, New N (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefPubMedGoogle Scholar
  4. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  5. Beaumont LJ, Gallagher RV, Downey PO, Thuiller W, Leishman MR, Hughes L (2009a) Modelling the impact of Hieracium spp. on protected areas in Australia under future climates. Ecography 32(5):757–764CrossRefGoogle Scholar
  6. Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009b) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420CrossRefGoogle Scholar
  7. Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19(12):3740–3748CrossRefGoogle Scholar
  8. Bertelsmeier C, Luque GM, Courchamp F (2013) Global warming may freeze the invasion of big-headed ants. Biol Invasions 15:1561–1572CrossRefGoogle Scholar
  9. Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15:1511–1521CrossRefGoogle Scholar
  10. Braunisch V, Coppes J, Arlettaz R, Suchant R, Schmid H, Bollmann K (2013) Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36(9):971–983CrossRefGoogle Scholar
  11. Breiman L (2001) Random forests. Mach Learn 45(5):32Google Scholar
  12. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. The Wadsworth statistics probability series. Chapman and Hall, New YorkGoogle Scholar
  13. Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709CrossRefPubMedGoogle Scholar
  14. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157CrossRefGoogle Scholar
  15. Chan-Halbrendt C, Lin T, Yang F, Sisior G (2010) Hawaiian residents’ preferences for M. calvescens control program attributes using conjoint choice experiment and latent class analysis. Environ Manag 45:250–260CrossRefGoogle Scholar
  16. Corlett RT (2010) Invasive aliens on tropical East Asian islands. Biodivers Conserv 19:411–423CrossRefGoogle Scholar
  17. Csurhes SM (1998) Miconia calvescens, a potentially invasive plant in Australia’s tropical and sub-tropical rainforests. In: Meyer JY, Smith CW (ed) Proceedings of the first regional conference on Miconia calvescens control. Papeete, Tahiti, French Polynesia. Gouvernement de Polynésie française/University of Hawai’i at Manoa/Centre ORSTOM de Tahiti, pp 72–77Google Scholar
  18. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57CrossRefGoogle Scholar
  19. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  20. Florence J (1993) La végétation de quelques îles de Polynésie. In: Dupon F (ed) Atlas de la Polynésie française. ORSTO, Paris, pp 54–55Google Scholar
  21. Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (2013) Plant invasions in protected areas: patterns, problems and challenges. Invading nature, Springer series in invasion ecology, vol 7. Springer, New YorkCrossRefGoogle Scholar
  22. Friedman AR, Hwang YT, Chiang JCH, Frierson DMW (2013) Interhemispheric temperature asymmetry over the 20th century and in future projections. J Clim 26(15):5419–5433CrossRefGoogle Scholar
  23. Gallagher RV, Hughes L, Leishman MR, Wilson PD (2010a) Predicted impact of exotic vines on an endangered ecological community under future climate change. Biol Invasions 12(12):4049–4063CrossRefGoogle Scholar
  24. Gallagher RV, Beaumont LJ, Hughes L, Leishman MR (2010b) Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J Ecol 98:790–799CrossRefGoogle Scholar
  25. Gallagher RV, Englert Duursma D, O’Donnell J, Wilson PD, Downey PO, Hughes L, Leishman MR (2013) The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol Invasions 15:961–975CrossRefGoogle Scholar
  26. Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W (2010) Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–342CrossRefGoogle Scholar
  27. Genovesi P (2005) Eradications of invasive alien species in Europe: a review. Biol Invasions 7:127–133CrossRefGoogle Scholar
  28. Goarant AG, Meyer JY (2009) Attempting the eradication of M. calvescens in a comprehensive strategy to control invasive species in New Caledonia. In: Loope LL, Meyer JY, Hardesty DB, Smith CW (eds) Proceedings of the international M. calvescens conference, Keanae, Maui, Hawaii, May 4–7, 2009, Maui Invasive Species Committee and Pacific Cooperative Studies Unit, University of Hawaii at Manoa, pp 1–6Google Scholar
  29. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  30. Hardesty BD, Metcalfe SS, Westcott DA (2011) Persistence and spread in a new landscape: dispersal ecology and genetics of M. calvescens invasions in Australia. Acta Oecol 37:657–665CrossRefGoogle Scholar
  31. Hardesty BD, Le Roux JJ, Rocha OJ, Meyer JY, Westcott D, Wieczorek AM (2012) Getting here from there: testing the genetic paradigm underpinning introduction histories and invasion success. Divers Distrib 18:147–157CrossRefGoogle Scholar
  32. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  33. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270CrossRefGoogle Scholar
  34. Havens K (2006) Developing an invasive plant policy at a botanic garden: lessons learned. BGjournal 3:22–24Google Scholar
  35. Hester SM, Brooks SJ, Cacho OJ, Panetta FD (2010) Applying a simulation model to the management of an infestation of M. calvescens in the wet tropics of Australia. Weed Res 50:269–279CrossRefGoogle Scholar
  36. Heywood VH, Sharrock S (2013) European code of conduct for botanic gardens on invasive alien species. Council of Europe Publishing, Strasbourg; Botanic Gardens Conservation International, RichmondGoogle Scholar
  37. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25:1965–1978CrossRefGoogle Scholar
  38. Hulme PE (2011) Addressing the threat to biodiversity from botanic gardens. Trends Ecol Evol 26(4):168–174CrossRefPubMedGoogle Scholar
  39. IPCC (2013) Climate change 2013, the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  40. Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragon P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797CrossRefGoogle Scholar
  41. Kaiser BA (2006) Economic impacts of non-indigenous species: M. calvescens and the Hawaiian economy. Euphytica 148:135–150CrossRefGoogle Scholar
  42. Kier G, Kreft H, Ming T, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. PNAS 23:9322–9327CrossRefGoogle Scholar
  43. Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudoacacia into nature reserves and endangered habitats. Biol Conserv 143:382–390CrossRefGoogle Scholar
  44. LaRosa AM, Purrell M, Franklin J, Denslow J (2007) Designing a control strategy for M. calvescens in Hawaii using spatial modelling. In: 9th international conference on the ecology and management of alien plant invasions, Perth, AustraliaGoogle Scholar
  45. Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard A, O’Farrell PJ, Rogers AM, Blanchard R, Blignaut J, Richardson RM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17(5):1015–1029CrossRefGoogle Scholar
  46. Lenoir J, Gégout JC, Marquet PM, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771CrossRefPubMedGoogle Scholar
  47. Liu C, Berry BM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  48. Liu C, White M, Newell G (2009) Measuring the accuracy of species distribution models: a review. 18th World IMACS/MODSIM Congress, Cairns, AustraliaGoogle Scholar
  49. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, West Sussex, p 36Google Scholar
  50. Loope L, Medeiros AC (1995) Strategies for long-term protection of biological diversity in native rain forest of Haleakala National Park and East Maui, Hawaii. Endanger Species Update 12(6):1–5Google Scholar
  51. Lowe S, Browne M, Boudjelas S, de Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG), 12 ppGoogle Scholar
  52. Marris E (2006) Plant science: gardens in full bloom. Nature 440:860–863CrossRefPubMedGoogle Scholar
  53. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, LondonCrossRefGoogle Scholar
  54. Medeiros AC, Loope LL (1997) Status, ecology, and management of the invasive plant, M. calvescens DC (Melastomataceae) in the Hawaiian Islands. Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 48:23–36Google Scholar
  55. Meyer JY (1994) Mécanismes d’invasion de M. calvescens DC en Polynésie française. Ph.D. Thesis. Université Montpellier II Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  56. Meyer JY (1996) Status of M. calvescens (Melastomataceae), a dominant invasive tree in the Society Islands (French Polynesia). Pac Sci 50(1):66–76Google Scholar
  57. Meyer JY (1998) Observations on the reproductive biology of M. calvescens DC (Melastomataceae), an alien invasive tree in the island of Tahiti (South Pacific Ocean). Biotropica 30(4):609–624CrossRefGoogle Scholar
  58. Meyer JY (2010) The M. calvescens saga: 20 years of study and control in French Polynesia (1988–2008). In: Loope LL, Meyer JY, Hardesty BD, Smith CW (eds) Proceedings of the international M. calvescens conference, Keanae, Maui, Hawaii. Maui Invasive Species Committee and Pacific Cooperative Studies Unit. University of Hawaii, Manoa, pp 1–19Google Scholar
  59. Meyer JY, Florence J (1996) Tahiti native flora endangered by the invasion of M. calvescens DC. (Melastomataceae). J Biogeogr 23:775–781CrossRefGoogle Scholar
  60. Meyer JY, Lavergne C (2001) The role of forest structure in plant invasions on tropical oceanic islands. In: Ganeshaiah KN, Shaanker U, Bawa KS (eds) Tropical ecosystems: structure, diversity and human welfare. Proceedings of the international conference on tropical ecosystems. Oxford–IBH, New Delhi, pp 456–458Google Scholar
  61. Meyer JY, Loope LL, Goarant A (2011) Strategy to control the invasive alien tree M. calvescens in Pacific islands: eradication, containment or something else? In: Veitch CR, Clout AN, Towns DR (eds) Island invasives: eradication and management. IUCN, Gland and CBB, Auckland, pp 91–96Google Scholar
  62. Murphy HT, Hardesty BD, Fletcher CS, Metcalfe DJ, Wescott DA, Brooks SJ (2008) Predicting dispersal and recruitment of M. calvescens (Melastomataceae) in Australian tropical rain forest. Biol Invasions 10:925–936CrossRefGoogle Scholar
  63. Parker IM, Simberloff D, Londsdale WD, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19CrossRefGoogle Scholar
  64. Parker-Allie F, Musil CF, Thuiller W (2009) Effects of climate warming on the distributions of invasive Eurasian annual grasses: a South African perspective. Clim Change 94(1–2):87–103CrossRefGoogle Scholar
  65. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  66. Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158CrossRefPubMedGoogle Scholar
  67. Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience 51(5):363–371CrossRefGoogle Scholar
  68. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335(6074):1344–1348CrossRefPubMedGoogle Scholar
  69. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manag 57:239–251CrossRefGoogle Scholar
  70. Pimentel D, Zúniga R, Morrison D (2005) Update on the environmental and the economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  71. Pouteau R, Meyer JY, Soll B (2011) A SVM-based model for predicting distribution of the invasive tree M. calvescens in tropical rain forest. Ecol Model 222:2631–2641. doi:10.1016/j.ecolmodel.2011.04.030 CrossRefGoogle Scholar
  72. Pyšek P, Jarošίk J, Kučerac T (2002) Patterns of invasion in temperate nature reserves. Biol Conserv 104:13–24CrossRefGoogle Scholar
  73. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. BioScience 51:103–113CrossRefGoogle Scholar
  74. Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 332–355Google Scholar
  75. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935CrossRefGoogle Scholar
  76. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181Google Scholar
  77. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  78. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tablacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66CrossRefPubMedGoogle Scholar
  79. Teoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting non-indigenous species success during four stages of invasion. New Phytol 176:256–273CrossRefGoogle Scholar
  80. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  81. Van Vuuren DP, Eickhout B, Lucas PL, den Elzen MGJ (2006) Long-termmulti-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework. Energy J 27:201–233Google Scholar
  82. Van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, Van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159CrossRefGoogle Scholar
  83. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  84. Vicente J, Alves P, Randin C, Guisan A, Honrado J (2010) What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in Northern Portugal. Ecography 33:1081–1092CrossRefGoogle Scholar
  85. Vicente J, Randin C, Gonçalves J, Metzger M, Lomba A, Honrado J, Guisan A (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13(5):209–1227CrossRefGoogle Scholar
  86. Vicente JA, Fernandes RF, Randin CF, Broennimann O, Gonçalves J, Marcos B, Pôças I, Alves P, Guisan A, Honrado JP (2013) Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J Environ Manag 131:185–195CrossRefGoogle Scholar
  87. Vitousek PM, D´Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84(5):218–228Google Scholar
  88. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(28):389–395CrossRefPubMedGoogle Scholar
  89. Whitmore TC (1991) Tropical rain forest dynamics and its implications for management. In: Gómez-Pompa A, Whitmore TC, Hadley M (eds) Rain Forest Regeneration and Management. Parthenon Publishing, Lancaster, and UNESCO, Paris, pp 67–89Google Scholar
  90. Williams KJ, Ford A, Rosauer CF, De Silva N, Russell Mittermeier CB, Larsen FW, Margules C (2011) Forests of East Australia: the 35th biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots distribution and protection of conservation priority areas. Springer, Vienna, pp 295–310Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Noelia González-Muñoz
    • 1
  • Céline Bellard
    • 2
  • Camille Leclerc
    • 2
  • Jean-Yves Meyer
    • 3
  • Franck Courchamp
    • 2
  1. 1.Departamento de Ciencias de la VidaUniversidad de AlcaláAlcalá de Henares, MadridSpain
  2. 2.Ecologie, Systématique et Evolution, UMR CNRS 8079Université Paris-SudOrsay, CedexFrance
  3. 3.Délégation à la Recherche, Ministère de l’Education, de l’Enseignement Supérieur et de la RechercheGouvernement de Polynésie françaisePapeeteFrench Polynesia

Personalised recommendations