Advertisement

Biological Invasions

, Volume 17, Issue 10, pp 2795–2801 | Cite as

Rapid increase of the parasitic fungus Laboulbenia formicarum in supercolonies of the invasive garden ant Lasius neglectus

  • Simon Tragust
  • Heike Feldhaar
  • Xavier Espadaler
  • Jes Søe Pedersen
Invasion Note

Abstract

A key feature among invasive ant species is their ability to dominate vast areas by forming dense networks of connected nests in contrast to the smaller and discrete, spatially dispersed colonies of most social insects. However, it was recently proposed that such supercolonies are more vulnerable to infection by parasites and diseases as they would serve as large targets with high rates of transmission from nests to nest. We studied the invasive garden ant Lasius neglectus, a pest species currently spreading throughout Europe. Several populations are infected with an ectoparasitic fungus, Laboulbenia formicarum, itself an introduced species, yielding a new host–parasite relationship. Long-term monitoring of the prevalence and intensity of infection in two populations (supercolonies) over 4–10 years revealed epizootic spread of the parasite with a 14 % annual increase in prevalence until ca. 80 % of all ants were infected. In contrast, no other local ant species with discrete colonies carried the parasite, although a local species (Lasius niger) proved susceptible in a cross-infection experiment. These results support the hypothesis that supercolonies potentially face an important challenge from parasites and diseases, with interesting perspectives for biological control of such ant species.

Keywords

Host–parasite interaction Laboulbeniales Invasive species Epizootiology Unicoloniality Social insects 

Notes

Acknowledgments

We thank Nabila Devos, Tim Engelkes, Tatiana Giraud, Sandy Weidlich and Bernard Le Roux for help with ant collection, Martin Otto Schmitt for part of the data acquisition, Pina Brinker and Oliver Otti for discussion, and Jon Shik and four anonymous reviewers for constructive comments on previous versions of the manuscript. This study was partly supported by the Danish National Research Foundation (Grant DNRF57; J.S.P.).

Supplementary material

10530_2015_917_MOESM1_ESM.docx (209 kb)
Supplementary material 1 (DOCX 209 kb)
10530_2015_917_MOESM2_ESM.docx (49 kb)
Supplementary material 2 (DOCX 48 kb)
10530_2015_917_MOESM3_ESM.docx (22 kb)
Supplementary material 3 (DOCX 22 kb)

References

  1. Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4
  2. Báthori F, Csata E, Tartally A (2015) Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J Invertebr Pathol 126:78–82CrossRefPubMedGoogle Scholar
  3. Bretz F, Hothorn T, Westfall P (2011) Multiple comparisons using R. CRC Press, Boca RatonGoogle Scholar
  4. Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662CrossRefGoogle Scholar
  5. Core Team R (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  6. Cremer S et al (2008) The evolution of invasiveness in garden ants. PLoS One 3:e3838PubMedCentralCrossRefPubMedGoogle Scholar
  7. Csata E, Erős K, Markó B (2014) Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Soc 61:247–252Google Scholar
  8. De Kesel A (1993) Relations between host population density and spore transmission of Laboulbenia slackensis (Ascomycetes, Laboulbeniales) from Pogonus chalceus (Coleoptera, Carabidae). Belg J Bot 126:155–163Google Scholar
  9. Espadaler X, Santamaria S (2012) Ecto- and endoparasitc fungi on ants from the Holarctic region. Psyche Article ID 168478Google Scholar
  10. Espadaler X, Lebas C, Wagenknecht J, Tragust S (2011) Laboulbenia formicarum (Ascomycota, Laboulbeniales), an exotic parasitic fungus, on an exotic ant in France. Vie Milieu 61:41–44Google Scholar
  11. Flory SL, Clay K (2013) Pathogen accumulation and long-term dynamics of plant invasions. J Ecol 101:607–613CrossRefGoogle Scholar
  12. Fuxa JR, Sokolova YY, Milks ML, Richter AR, Williams DF, Oi DH (2005) Prevalence, spread, and effects of the microsporidium Thelohania solenopsae released into populations with different social forms of the red imported fire ant (Hymenoptera: Formicidae). Environ Entomol 34:1139–1149CrossRefGoogle Scholar
  13. Hanna C, Cook ED, Thompson AR, Dare LE, Palaski AL, Foote D, Goodisman MAD (2014) Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol Invasions 16:283–294CrossRefGoogle Scholar
  14. Helanterä H, Strassmann JE, Carrillo J, Queller DC (2009) Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol Evol 24:341–349CrossRefPubMedGoogle Scholar
  15. Herraiz JA, Espadaler X (2007) Laboulbenia formicarum (Ascomycota: Laboubleniales) reaches the Mediterranean. Sociobiology 50:449–455Google Scholar
  16. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233CrossRefGoogle Scholar
  17. Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23:672–677CrossRefPubMedGoogle Scholar
  18. Konrad M, Grasse AV, Tragust S, Cremer S (2015) Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc R Soc Lond B Biol Sci 282:20141976CrossRefGoogle Scholar
  19. Leniaud L, Pichon A, Uva P, Bagnères AG (2009) Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull Entomol Res 99:1–10CrossRefPubMedGoogle Scholar
  20. Mitchell CE, Blumenthal D, Jarosik V, Puckett EE, Pysek P (2010) Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol Lett 13:1525–1535PubMedCentralCrossRefPubMedGoogle Scholar
  21. Moller H (1996) Lessons for invasion theory from social insects. Biol Conserv 78:125–142CrossRefGoogle Scholar
  22. Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320CrossRefPubMedGoogle Scholar
  23. Nuhn TP, Van Dyke CG (1979) Laboulbenia formicarum Thaxter (Ascomycotina: Laboulbeniales) on ants (Hymenoptera: Formicidae) in Raleigh, North Carolina with a new host record. Proc Entomol Soc Wash 81:101–104Google Scholar
  24. Pedersen JS, Krieger MJ, Vogel V, Giraud T, Keller L (2006) Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60:782–791CrossRefPubMedGoogle Scholar
  25. Raak-van den Berg CL, van Wielink PS, de Jong PW, Gort G, Haelewaters D, Helder J, van Lenteren JC (2014) Invasive alien species under attack: natural enemies of Harmonia axyridis in the Netherlands. Biocontrol 59:229–240CrossRefGoogle Scholar
  26. Rust MK, Su NY (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375CrossRefPubMedGoogle Scholar
  27. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  28. Schneider SS, DeGrandi-Hoffman G, Smith DR (2004) The African honey bee: factors contributing to a successful biological invasion. Annu Rev Entomol 49:351–376CrossRefGoogle Scholar
  29. Shapiro-Ilan DI, Bruck DJ, Lacey LA (2012) Principles of epizootiology and microbial control. In: Vega FE, Kaya HK (eds) Insect pathology. Academic Press, London, pp 91–201Google Scholar
  30. Silverman J, Brightwell RJ (2008) The Argentine ant: challenges in managing an invasive unicolonial pest. Annu Rev Entomol 53:231–252CrossRefPubMedGoogle Scholar
  31. Simberloff D, Gibbons L (2004) Now you see them, now you don’t!—population crashes of established introduced species. Biol Invasions 6:161–172CrossRefGoogle Scholar
  32. Ugelvig LV, Cremer S (2012) Effects of social immunity and unicoloniality on host–parasite interactions in invasive insect societies. Funct Ecol 26:1300–1312CrossRefGoogle Scholar
  33. Ugelvig LV, Drijfhout FP, Kronauer DJC, Boomsma JJ, Pedersen JS, Cremer S (2008) The introduction history of invasive garden ants in Europe: integrating genetic, chemical and behavioural approaches. BMC Biol 6:11–25PubMedCentralCrossRefPubMedGoogle Scholar
  34. Vogel V, Pedersen JS, d’Ettorre P, Lehmann L, Keller L (2009) Dynamics and genetic structure of Argentine ant supercolonies in their native range. Evolution 63:1627–1639CrossRefPubMedGoogle Scholar
  35. Weir A, Blackwell M (2005) Fungal biotrophic parasites of insects and other arthropods. In: Vega FE, Blackwell M (eds) Insect–fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 119–145Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Simon Tragust
    • 1
  • Heike Feldhaar
    • 1
  • Xavier Espadaler
    • 2
  • Jes Søe Pedersen
    • 3
  1. 1.Animal Ecology IUniversity of BayreuthBayreuthGermany
  2. 2.Ecology Unit, CREAFUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  3. 3.Department of Biology, Centre for Social EvolutionUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations