Biological Invasions

, Volume 17, Issue 8, pp 2357–2371 | Cite as

Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe

  • M. Arca
  • F. Mougel
  • T. Guillemaud
  • S. Dupas
  • Q. Rome
  • A. Perrard
  • F. Muller
  • A. Fossoud
  • C. Capdevielle-Dulac
  • M. Torres-Leguizamon
  • X. X. Chen
  • J. L. Tan
  • C. Jung
  • C. Villemant
  • G. Arnold
  • J.-F. Silvain
Original Paper

Abstract

The yellow-legged hornet, Vespa velutina, was accidentally introduced from Southeast Asia and then invaded France and Korea over the last 10 years. Since its introduction, its predation on honeybee colonies has rapidly become an economic problem in invaded countries. Using mitochondrial cytochrome C oxidase and 22 nuclear microsatellite loci, we showed that native hornet populations were well differentiated and highly diverse. In contrast, introduced populations from France and Korea suffered a genetic bottleneck, which did not prevent their rapid geographic expansion. Analysis of the genetic data indicates that French and Korean populations likely arose from two independent introduction events. The most probable source population is from an area between the Chinese provinces of Zhejiang and Jiangsu. This invasion route is in agreement with knowledge on trade and historical records. By studying colonies of V. velutina, we demonstrated its polyandry, which is very rare among Vespidae. This mating behavior could have favored the success of this Asian hornet in Europe and Korea. Combined, the population and colony results suggest that very few or possibly only one single multi-mated female gave rise to the invasion.

Keywords

Yellow-legged hornet Vespa velutina Invasive species Approximate Bayesian computation 

Supplementary material

10530_2015_880_MOESM1_ESM.docx (593 kb)
Supplementary material 1 (DOCX 594 kb)
10530_2015_880_MOESM2_ESM.docx (250 kb)
Supplementary material 2 (DOCX 250 kb)
10530_2015_880_MOESM3_ESM.txt (0 kb)
Supplementary material 3 (TXT 1 kb)

References

  1. Abrol DP (1994) Ecology, behaviour and management of social wasp, Vespa velutina Smith (Hymenoptera: Vespidae), attacking honeybee colonies. Korean J Apic 9:5Google Scholar
  2. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  3. Arca M, Capdevielle-Dulac C, Villemant C et al (2011) Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv Genet Resour 2:283–286Google Scholar
  4. Beggs JR, Brockerhoff EG, Corley JC et al (2011) Ecological effects and management of invasive alien Vespidae. Biocontrol 56:505–526CrossRefGoogle Scholar
  5. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Statist 29(4):1165–1188CrossRefGoogle Scholar
  6. Carpenter JM, Kojima J (1997) Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae). Natural history bulletin of Ibaraki University 1:51–92Google Scholar
  7. Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662CrossRefGoogle Scholar
  8. Choi MB, Martin SJ, Lee JW (2012) Distribution, spread and impact of the invasive hornet Vespa velutina in South Korea. Asia-Pacific Entomol 15:473–477CrossRefGoogle Scholar
  9. Choi MB, Lee S-A, Suk HY, Lee JW (2013) Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax. South Korea. Entomol Res 43(4):208–214CrossRefGoogle Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  11. Cornuet JM, Luikart GL (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedCentralPubMedGoogle Scholar
  12. Cornuet JM, Santos F, Beaumont MA et al (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719PubMedCentralPubMedCrossRefGoogle Scholar
  13. Crozier R, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera—disunity in diversity? Annls Zool Fennici 38:267–285 Google Scholar
  14. Daly D, Archer ME, Watts PC et al (2002) Polymorphic microsatellite loci for eusocial wasps (Hymenoptera: Vespidae). Mol Ecol Notes 2:273Google Scholar
  15. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431PubMedCrossRefGoogle Scholar
  16. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  17. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  18. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 5:294–299Google Scholar
  19. Frankham R, Ralls K (1998) Conservation biology: inbreeding leads to extinction. Nature 392:441–442CrossRefGoogle Scholar
  20. Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore JS, Moyers BT, Renaut S, Rennison DJ, Veen T, Vines TH (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. Mol Ecol 21:4925–4930PubMedCrossRefGoogle Scholar
  21. Guillemaud T, Ciosi M, Lombaert E, Estoup A (2011) Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. C R Biol 33:237–246CrossRefGoogle Scholar
  22. Hajibabaei M, deWaard JR, Ivanova NV et al (2005) Critical factors for assembling a high volume of DNA barcodes. Philos Trans R Soc Lond B Biol Sci 360:1959–1967PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. Hasegawa E, Takahashi J (2002) Microsatellite loci for genetic research in the hornet Vespa mandarinia and related species. Mol Ecol Notes 2:306CrossRefGoogle Scholar
  25. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Evol Syst 33:181–233CrossRefGoogle Scholar
  26. Hughes WOH, Ratnieks FLW, Oldroyd BP (2008) Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J EvolutionBiol 21:1090–1095Google Scholar
  27. Ings TC, Ward NL, Chittka L (2006) Can commercially imported bumble bees out-compete their native conspecifics? J Appl Ecol 43:940–948CrossRefGoogle Scholar
  28. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801PubMedCrossRefGoogle Scholar
  29. Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev Camb Philos Soc 75:21–64PubMedCrossRefGoogle Scholar
  30. Ken T, Hepburn HR, Radloff SE et al (2005) Heat-balling wasps by honeybees. Naturwissenschaften 92:492–495PubMedCrossRefGoogle Scholar
  31. Luikart G, Allendorf F, Cornuet JM, Sherwin W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238PubMedCrossRefGoogle Scholar
  32. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Cons Biol 12(1):228–237Google Scholar
  33. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appls 10:689–710CrossRefGoogle Scholar
  34. Mikheyev AS (2008) History, genetics and pathology of a leaf-cutting ant introduction: a case study of the Guadeloupe invasion. Biol Invasions 10:467–473CrossRefGoogle Scholar
  35. Mikheyev AS, Bresson S, Conant P (2009) Single-queen introductions characterize regional and local invasions by the facultatively clonal little fire ant Wasmannia auropunctata. Mol Ecol 18:2937–2944PubMedCrossRefGoogle Scholar
  36. Moller H (1996) Lessons for invasion theory from social insects. Biol Cons 78:125–142CrossRefGoogle Scholar
  37. Monceau K, Arca M, Leprêtre L, Mougel F, Bonnard O, Silvain JF, Maher N, Arnold G, Thiéry D (2013) Native prey and invasive predator patterns of foraging activity: the case of the yellow-legged hornet predation at European honeybee hives. PLoS ONE 8(6):e66492PubMedCentralPubMedCrossRefGoogle Scholar
  38. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  39. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65PubMedCrossRefGoogle Scholar
  40. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedCentralPubMedCrossRefGoogle Scholar
  41. Perrard A, Haxaire J, Rortais A, Villemant C (2009) Observations on the colony activity of the Asian hornet Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae: Vespinae) in France. Ann Soc Entomol Fr 45:119–127Google Scholar
  42. Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  43. Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS 2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536PubMedCrossRefGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  45. Puillandre N, Dupas S, Dangles O et al (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333CrossRefGoogle Scholar
  46. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA (PNAS) 94:9197–9201CrossRefGoogle Scholar
  47. Rasplus JY, Villemant C, Paiva MR, Delvare G, Roques A (2010) Hymenoptera. In: Roques A, Kenis M, Lees D (eds) Arthropod invasions in Europe. BioRisk 4. Pensoft, Sofia, pp 669–776Google Scholar
  48. Rome Q, Dambrine L, Onate C, Muller F, Villemant C, Garcia-Perez L, Maia M, Carvalho Esteves P, Bruneau E (2013) Spread of the invasive hornet Vespa velutina Lepeletier, 1836, in Europe in 2012 (Hym., Vespidae). Bull Soc entomol Fr 118:21–22Google Scholar
  49. Rortais A, Villemant C, Gargominy O, Rome Q, Haxaire J, Papachristoforou A, Arnold G (2010) A new enemy of honeybees in Europe: the Asian hornet Vespa velutina. In: Settele J (ed) Atlas of biodiversity risks—from Europe to the globe, from stories to maps. Pensoft, SofiaGoogle Scholar
  50. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385  Google Scholar
  51. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resources 8:103–106CrossRefGoogle Scholar
  52. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  53. Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Philos Trans R Soc B-Biol Sci 354:507–515CrossRefGoogle Scholar
  54. Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman OD, Allen GR (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity 99:414–422PubMedCrossRefGoogle Scholar
  55. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360PubMedCrossRefGoogle Scholar
  56. Tan K, Radloff S, Li JJ, Hepburn HR, Yang MX, Zhang LJ, Neumann P (2007) Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera. Naturwissenschaften 94:469–472PubMedCrossRefGoogle Scholar
  57. Templeton AR, Crandall KA, Sing CF (1992) A cladistics analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data, III. Cladogram estimation. Genetics 132:619–633Google Scholar
  58. Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58CrossRefGoogle Scholar
  59. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2001) Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol Ecol 10:2151–2161PubMedCrossRefGoogle Scholar
  60. Villemant C (2008) Apis cerana se défend contre Vespa velutina : observations dans le massif forestier du Bi Doup, Vietnam. Bull Soc entomol Fr 113:312Google Scholar
  61. Villemant C, Haxaire J, Streito JC (2006) Premier bilan de l’invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae). Bull Soc entomol Fr 111:535Google Scholar
  62. Villemant C, Barbet-Massin M, Perrard A et al (2011) Predicting the invasion risk by the alien bee-hawking yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol Cons 144:2142–2150CrossRefGoogle Scholar
  63. Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181(4):1579–1594PubMedCentralPubMedCrossRefGoogle Scholar
  64. Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland, MA, pp 229–257Google Scholar
  65. Sinauer, Sunderland, MA.    Yasui Y (1998) The “genetic benefits” of female multiple mating reconsidered. Trends Ecol Evol 13:246–250PubMedCrossRefGoogle Scholar
  66. Zayed A, Constantin SA, Packer L (2007) Successful biological invasion despite a severe genetic load. PLoS ONE 2(9):e868PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Arca
    • 1
    • 2
    • 3
  • F. Mougel
    • 2
    • 3
  • T. Guillemaud
    • 4
  • S. Dupas
    • 1
    • 2
  • Q. Rome
    • 5
  • A. Perrard
    • 5
  • F. Muller
    • 5
  • A. Fossoud
    • 1
  • C. Capdevielle-Dulac
    • 1
    • 2
  • M. Torres-Leguizamon
    • 1
    • 2
  • X. X. Chen
    • 6
  • J. L. Tan
    • 7
  • C. Jung
    • 8
  • C. Villemant
    • 5
  • G. Arnold
    • 2
    • 3
  • J.-F. Silvain
    • 1
    • 2
  1. 1.IRD, UMR EGCE (Evolution, Génome, Comportement et Ecologie) Univ. Paris-Sud - CNRS -IRD, Univ. Paris-SaclayGif-sur-YvetteFrance
  2. 2.Université Paris-Sud 11Orsay CedexFrance
  3. 3.CNRS, UMR EGCE (Evolution, Génome, Comportement et Ecologie) Univ. Paris-Sud - CNRS -IRD, Univ. Paris-SaclayGif-sur-YvetteFrance
  4. 4.INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia AgrobiotechSophia AntipolisFrance
  5. 5.UMR7205, CP50Muséum National d’Histoire NaturelleParisFrance
  6. 6.State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect SciencesZhejiang UniversityHangzhouChina
  7. 7.School of Life SciencesNorthwest UniversityXi’anChina
  8. 8.School of Bioresource SciencesAndong National UniversityAndongKorea

Personalised recommendations