Biological Invasions

, Volume 17, Issue 5, pp 1313–1326 | Cite as

Trade of ornamental crayfish in Europe as a possible introduction pathway for important crustacean diseases: crayfish plague and white spot syndrome

  • A. Mrugała
  • E. Kozubíková-Balcarová
  • C. Chucholl
  • S. Cabanillas Resino
  • S. Viljamaa-Dirks
  • J. Vukić
  • A. Petrusek
Original Paper


Rapidly growing trade of ornamental animals may represent an entry pathway for emerging pathogens; this may concern freshwater crayfish that are increasingly popular pets. Infected crayfish and contaminated water from aquaria may be released to open waters, thus endangering native crustacean fauna. We tested whether various non-European crayfish species available in the pet trade in Germany and the Czech Republic are carriers of two significant crustacean pathogens, the crayfish plague agent Aphanomyces astaci and the white spot syndrome virus (WSSV). The former infects primarily freshwater crayfish (causing substantial losses in native European species), the latter is particularly known for economic losses in shrimp aquacultures. We screened 242 individuals of 19 North American and Australasian crayfish taxa (the identity of which was validated by DNA barcoding) for these pathogens, using molecular methods recommended by the World Organisation for Animal Health. A. astaci DNA was detected in eight American and one Australian crayfish species, comprising in total 27 % of screened batches. Furthermore, viability of A. astaci was confirmed by its isolation to axenic cultures from three host taxa, including the parthenogenetic invader Marmorkrebs (Procambarus fallax f. virginalis). In contrast, WSSV was only confirmed in three individuals of Australian Cherax quadricarinatus. Despite modest prevalence of detected infections, our results demonstrate the potential of disease entry and spread through this pathway, and should be considered if any trade regulations are imposed. Our study highlights the need for screening for pathogens in the ornamental trade as one of the steps to prevent the transmission of emerging diseases to wildlife.


Aquarium trade Exotic pathogens Aphanomyces astaci White spot syndrome virus Marmorkrebs DNA barcoding 



The study has been partially funded by the Czech Science Foundation (Project No. P505/12/0545). A.M. was supported by the Charles University in Prague (Project SVV 267204). E.K.-B. was supported by the Project No. CZ.1.07/2.3.00/30.0022 of the Education for Competitiveness Operational Programme (ECOP) co-financed by the European Social Fund and the State Budget of the Czech Republic. We thank Michelle Pond and Kelly Bateman for their support with the WSSV molecular detection, Jiří Patoka and Petr Difko for providing crayfish from some Czech sources, and Jiří Svoboda for technical support. Anonymous referees provided useful comments to previous versions of the manuscript.


  1. Ahern D, England J, Ellis A (2008) The virile crayfish, Orconectes virilis (Hagen, 1870) (Crustacea: decapoda: cambaridae), identified in the UK. Aquat Invasions 3:102–104. doi: 10.3391/ai.2008.3.1.18 CrossRefGoogle Scholar
  2. Alderman DJ (1996) Geographical spread of bacterial and fungal diseases of crustaceans. Rev Sci Tech OIE 15:603–632Google Scholar
  3. Bartley DM, Subasinghe RP (1996) Historical aspects of international movement of living aquatic species. Rev Sci Tech OIE 15:387–400Google Scholar
  4. Bateman KS, Tew I, French C, Hicks RJ, Martin P, Munro J, Stentiford GD (2012) Susceptibility to infection and pathogenicity of white spot disease (WSD) in non-model crustacean host taxa from temperate regions. J Invertebr Pathol 110:340–351. doi: 10.1016/j.jip.2012.03.022 CrossRefPubMedGoogle Scholar
  5. Baumgartner WA, Hawke JP, Bowles K, Varner PW, Hasson KW (2009) Primary diagnosis and surveillance of white spot syndrome virus in wild and farmed crawfish (Procambarus clarkii, P. zonangulus) in Louisiana. USA. Dis Aquat Org 85:15–22. doi: 10.3354/dao02051 CrossRefGoogle Scholar
  6. Cerenius L, Bangyeekhun E, Keyser P, Söderhäll I, Söderhäll K (2003) Host prophenoloxidase expression in freshwater crayfish is linked to increased resistance to the crayfish plague fungus, Aphanomyces astaci. Cell Microbiol 5:353–357. doi: 10.1046/j.1462-5822.2003.00282.x CrossRefPubMedGoogle Scholar
  7. Chucholl C (2013) Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol Invasions 15:125–141. doi: 10.1007/s10530-012-0273-2 CrossRefGoogle Scholar
  8. Chucholl C, Morawetz K, Groß H (2012) The clones are coming—strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat Invasions 7:511–519. doi: 10.3391/ai.2012.7.4.008 CrossRefGoogle Scholar
  9. Culas A (2003) Entwicklung einer molekularbiologischen Methode zum Nachweis des Krebspesterregers Aphanomyces astaci SCHIKORA in nordamerikanischen Flusskrebsen (Pacifastacus leniusculus; Orconectes limosus; Procambarus clarkii). Dissertation, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  10. Cunningham CO (2002) Molecular diagnosis of fish and shellfish diseases: present status and potential use in disease control. Aquaculture 206:19–55. doi: 10.1016/S0044-8486(01)00864-X CrossRefGoogle Scholar
  11. DAISIE (2009) Handbook of alien species in Europe. Springer, DordrechtGoogle Scholar
  12. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449. doi: 10.1126/science.287.5452.443 CrossRefPubMedGoogle Scholar
  13. Diéguez-Uribeondo J, Cerenius L, Söderhäll K (1995) Physiological adaptations in an Aphanomyces astaci strain from the warm-water crayfish Procambarus clarkii. Mycol Res 99:574–578. doi: 10.1016/S0953-7562(09)80716-8 CrossRefGoogle Scholar
  14. Dümpelmann C, Bonacker F, Häckl M (2009) Erstnachweis des Roten Amerikanischen Sumpfkrebses Procambarus clarkii (Decapoda: cambaridae) in Hessen. Lauterbornia 67:39–47Google Scholar
  15. Edgerton BF (2004) Susceptibility of the Australian freshwater crayfish Cherax destructor albidus to white spot syndrome virus (WSSV). Dis Aquat Org 59:187–193. doi: 10.3354/dao059187 CrossRefPubMedGoogle Scholar
  16. Feria TP, Faulkes Z (2011) Forecasting the distribution of Marmorkrebs, a parthenogenetic crayfish with high invasive potential, in Madagascar, Europe, and North America. Aquat Invasions 6:55–67. doi: 10.3391/ai.2011.6.1.07 CrossRefGoogle Scholar
  17. Filipová L, Holdich DM, Lesobre J, Grandjean F, Petrusek A (2010) Cryptic diversity within the invasive virile crayfish Orconectes virilis (Hagen, 1870) species complex: new lineages recorded in both native and introduced ranges. Biol Invasions 12:983–989. doi: 10.1007/s10530-009-9526-0 CrossRefGoogle Scholar
  18. Filipová L, Petrusek A, Matasová K, Delaunay C, Grandjean F (2013) Prevalence of the crayfish plague pathogen Aphanomyces astaci in populations of the signal crayfish Pacifastacus leniusculus in France: evaluating the threat to native crayfish. PLoS ONE 8:e70157. doi: 10.1371/journal.pone.0070157 CrossRefPubMedCentralPubMedGoogle Scholar
  19. Fisher MC, Garner TWJ (2007) The relationship between the emergence of Batrachochytrium dendrobatidis, the wildlife trade in amphibians and introduced amphibian species. Fungal Biol Rev 21:2–9. doi: 10.1016/j.fbr.2007.02.002 CrossRefGoogle Scholar
  20. Flegel TW (2009) Current status of viral diseases in Asian shrimp aquaculture. Isr J Aquacult Bamidgeh 61:229–239Google Scholar
  21. Gozlan RE, Peeler EJ, Longshaw M, St-Hilaire S, Feist SW (2006) Effect of microbial pathogens on the diversity of aquatic populations, notably in Europe. Microbes Infect 8:1358–1364. doi: 10.1016/j.micinf.2005.12.010 CrossRefPubMedGoogle Scholar
  22. Gross H (2013) Blauer Floridakrebs (Procambraus alleni) im Rhein! Forum Flusskrebse 19:33–36Google Scholar
  23. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–322. doi: 10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  24. Holdich DM, Reynolds JD, Souty-Grosset C, Sibley PJ (2009) A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl Manag Aquat Ecosyst 11:394–395. doi: 10.1051/kmae/2009025 Google Scholar
  25. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18. doi: 10.1111/j.1365-2664.2008.01600.x CrossRefGoogle Scholar
  26. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, Nentwig W, Olenin S, Panov V, Pergl J et al (2008) Grasping at the routes of biological invasions: framework for integrating pathways into policy. J Appl Ecol 45:403–414. doi: 10.1111/j.1365-2664.2007.01442.x CrossRefGoogle Scholar
  27. Janský V, Mutkovič A (2010) Marbled crayfish —Procambarus sp. (Crustacea: decapoda: cambaridae)—first find in Slovakia. Acta Rer Natur Mus Nat Slov 56:64–67Google Scholar
  28. Jiravanichpaisal P, Söderhäll K, Söderhäll I (2004) Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immun 17:265–275. doi: 10.1016/j.fsi.2004.03.010 CrossRefGoogle Scholar
  29. Kim JH, Hayward CJ, Joh SJ, Heo GJ (2002) Parasitic infections in live freshwater tropical fishes imported to Korea. Dis Aquat Org 52:169–173. doi: 10.3354/dao052169 CrossRefPubMedGoogle Scholar
  30. Kouba A, Petrusek A, Kozák P (2014) Continental-wide distribution of crayfish species in Europe: update and maps. Knowl Manag Aquat Ecosyst 413:05. doi: 10.1051/kmae/2014007 CrossRefGoogle Scholar
  31. Kozubíková E, Vrålstad T, Filipová L, Petrusek A (2011) Re-examination of the prevalence of Aphanomyces astaci in North American crayfish populations in Central Europe by TaqMan MGB real-time PCR. Dis Aquat Org 97:113–125. doi: 10.3354/dao02411 CrossRefPubMedGoogle Scholar
  32. Lightner DV (2011) Viral diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. J Invertebr Pathol 106:110–130. doi: 10.1016/j.jip.2010.09.012 CrossRefPubMedGoogle Scholar
  33. Lo CF, Leu JH, Ho CH, Chen CH, Peng SE, Chen YT, Chou CM, Yeh PY, Huang CJ, Chou HY et al (1996) Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis Aquat Org 25:133–141. doi: 10.3354/dao025133 CrossRefGoogle Scholar
  34. Longshaw M, Bateman KS, Stebbing P, Stentiford GD, Hockley FA (2012) Disease risks associated with the importation and release of non-native crayfish species into mainland Britain. Aquat Biol 16:1–15. doi: 10.3354/ab00417 CrossRefGoogle Scholar
  35. Makkonen J, Kokko H, Vainikka A, Kortet R, Jussila J (2014) Dose-dependent mortality of the noble crayfish (Astacus astacus) to different strains of the crayfish plague (Aphanomyces astaci). J Invertebr Pathol 115:86–91. doi: 10.1016/j.jip.2013.10.009 CrossRefPubMedGoogle Scholar
  36. McColl KA, Slater J, Jeyasken G, Hyatt AD, Crane MS (2004) Detection of white spot syndrome virus and yellowhead virus in prawns imported into Australia. Aust Vet J 82:69–74CrossRefPubMedGoogle Scholar
  37. Oidtmann B (2012) Crayfish plague (Aphanomyces astaci). Manual of Diagnostic Tests for Aquatic Animals 2012. World Organization for Animal Health, Paris, pp 101–118Google Scholar
  38. Oidtmann B, Geiger S, Steinbauer P, Culas A, Hoffmann RW (2006) Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Dis Aquat Org 72:53–64. doi: 10.3354/dao072053 CrossRefPubMedGoogle Scholar
  39. OIE (2012) Manual of Diagnostic Tests for Aquatic Animals 2012. OIE—World Organisation for Animal Health, ParisGoogle Scholar
  40. Palumbi SR, Martin A, Romano S, MacMillan W, Stice L, Grabowski G (1991) The simple fool’s guide to PCR (Ver. 2). University of Hawaii Press, HonoluluGoogle Scholar
  41. Patoka J, Kalous L, Kopecký O (2014) Risk assessment of the crayfish pet trade based on data from the Czech Republic. Biol Invasions. doi: 10.1007/s10530-014-0682-5 Google Scholar
  42. Peay S (2009) Invasive non-indigenous crayfish species in Europe: recommendations on managing them. Knowl Manag Aquat Ecosyst 03:394–395. doi: 10.1051/kmae/2010009 Google Scholar
  43. Pedraza-Lara C, Doadrio I, Breinholt JW, Crandall KA (2012) Phylogeny and evolutionary patterns in the dwarf crayfish subfamily (Decapoda: cambarellinae). PLoS ONE 7:e48233. doi: 10.1371/journal.pone.0048233 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Peeler EJ, Oidtmann BC, Midtlyng PM, Miossec L, Gozlan RE (2011) Non-native aquatic animals introductions have driven disease emergence in Europe. Biol Invasions 13:1291–1303. doi: 10.1007/s10530-010-9890-9 CrossRefGoogle Scholar
  45. Pekny R, Lukhaup C (2005) Aquarienkrebse in Europa—eine rasante Entwicklung! 2. Internationale Flusskrebstagung, Baden 2005, Tagungsband, pp 78–94Google Scholar
  46. Reynolds J, Souty-Grosset C, Richardson A (2013) Ecological roles of crayfish in freshwater and terrestrial habitats. Freshw Crayfish 19:197–218. doi: 10.5869/fc.2013.v19-2.197 Google Scholar
  47. Rezinciuc S, Galindo J, Montserrat J, Diéguez-Uribeondo J (2014) AFLP-PCR and RAPD-PCR evidences of the transmission of the pathogen Aphanomyces astaci (Oomycetes) to wild populations of European crayfish from the invasive crayfish species, Procambarus clarkii. Fungal Biol 118:612–620. doi: 10.1016/j.funbio.2013.10.007 CrossRefPubMedGoogle Scholar
  48. Rodgers CJ, Mohan CV, Peeler EJ (2011) The spread of pathogens through trade in aquatic animals and their products. Rev Sci Tech OIE 30:241–256Google Scholar
  49. Schrimpf A, Chucholl C, Schmidt T, Schulz R (2013) Crayfish plague agent detected in populations of the invasive North American crayfish Orconectes immunis (Hagen, 1870) in the Rhine River, Germany. Aquat Invasions 8:103–109. doi: 10.3391/ai.2013.8.1.12 CrossRefGoogle Scholar
  50. Schrimpf A, Schmidt T, Schulz R (2014) Invasive Chinese mitten crab (Eriocheir sinensis) transmits crayfish plague pathogen (Aphanomyces astaci). Aquat Invasions 9:203–209. doi: 10.3391/ai.2014.9.2.09 CrossRefGoogle Scholar
  51. Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357. doi: 10.1111/j.1523-1739.2006.00524.x CrossRefPubMedGoogle Scholar
  52. Smith KF, Behrens MD, Sax DF (2009) Local scale effects of disease on biodiversity. EcoHealth 6:287–295. doi: 10.1007/s10393-009-0254-9 CrossRefPubMedGoogle Scholar
  53. Söderhäll K, Cerenius L (1999) The crayfish plague fungus: history and recent advances. Freshw Crayfish 12:11–35Google Scholar
  54. Stentiford GD, Bonami JR, Alday-Sanz V (2009) A critical review of susceptibility of crustaceans to Taura syndrome, yellowhead disease and white spot disease and implications of inclusion of these diseases in European legislation. Aquaculture 291:1–17. doi: 10.1016/j.aquaculture.2009.02.042 CrossRefGoogle Scholar
  55. Stentiford GD, Oidtmann B, Scott A, Peeler EJ (2010) Crustacean diseases in European legislation: implications for importing and exporting nations. Aquaculture 306:27–34. doi: 10.1016/j.aquaculture.2010.06.004 CrossRefGoogle Scholar
  56. Strand DA, Jussila J, Viljamaa-Dirks S, Kokko H, Makkonen J, Holst-Jensen A, Viljugrein H (2012) Vrålstad T (2012) Monitoring the spore dynamics of Aphanomyces astaci in the ambient water of latent carrier crayfish. Vet Microbiol 160:99–107. doi: 10.1016/j.vetmic.05.008 CrossRefPubMedGoogle Scholar
  57. Svoboda J, Kozubíková-Balcarová E, Kouba A, Buřič M, Kozák P, Diéguez-Uribeondo J, Petrusek A (2013) Temporal dynamics of spore release of the crayfish plague pathogen from its natural host, American spiny-cheek crayfish (Orconectes limosus), evaluated by transmission experiments. Parasitology 140:792–801. doi: 10.1017/S0031182012002223 CrossRefPubMedGoogle Scholar
  58. Svoboda J, Mrugała A, Kozubíková-Balcarová E, Kouba A, Diéguez-Uribeondo J, Petrusek A (2014a) Resistance to the crayfish plague pathogen, Aphanomyces astaci, in two freshwater shrimps. J Invertebr Pathol 121:97–104. doi: 10.1016/j.jip.2014.07.004 CrossRefPubMedGoogle Scholar
  59. Svoboda J, Strand DA, Vrålstad T, Grandjean F, Edsman L, Kozák P, Kouba A, Fristad RF, Bahadir Koca S, Petrusek A (2014b) The crayfish plague pathogen can infect freshwater-inhabiting crabs. Freshw Biol 59:918–929. doi: 10.1111/fwb.12315 CrossRefGoogle Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Masatoshi N, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Taylor CA, Knouft JH (2006) Historical influences on genital morphology among sympatric species: gonopod evolution and reproductive isolation in the crayfish genus Orconectes (Cambaridae). Biol J Linn Soc 89:1–12. doi: 10.1111/j.1095-8312.2006.00637.x CrossRefGoogle Scholar
  62. Tilmans M, Mrugała A, Svoboda J, Engelsma MY, Petie M, Soes DM, Nutbeam-Tuffs S, Oidtmann B, Roessink I, Petrusek A (2014) Survey of the crayfish plague pathogen presence in the Netherlands reveals a new Aphanomyces astaci carrier. J Invertebr Pathol 120:74–79. doi: 10.1016/j.jip.2014.06.002 CrossRefPubMedGoogle Scholar
  63. Tricarico E (2012) A review on pathways and drivers of use regarding non-native freshwater fish introductions in the Mediterranean region. Fish Manag Ecol 19:133–141. doi: 10.1111/j.1365-2400.2011.00834.x CrossRefGoogle Scholar
  64. Unestam T (1975) Defence reactions in and susceptibility of Australian and New Guinea freshwater crayfish to European crayfish plague fungus. Aust J Exp Biol Med 53:349–359CrossRefGoogle Scholar
  65. Viljamaa-Dirks S, Heinikainen S (2006) Improved detection of crayfish plague with a modified isolation method. Freshw Crayfish 15:376–382Google Scholar
  66. Viljamaa-Dirks S, Heinikainen S, Torssonen H, Pursiainen M, Mattila J, Pelkonen S (2013) Distribution and epidemiology of the crayfish plague agent Aphanomyces astaci genotypes from noble crayfish Astacus astacus in Finland. Dis Aquat Org 103:199–208. doi: 10.3354/dao02575 CrossRefPubMedGoogle Scholar
  67. Vrålstad T, Knutsen AK, Tengs T, Holst-Jensen A (2009) A quantitative TaqMan® MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces astaci. Vet Microbiol 137:146–155. doi: 10.1016/j.vetmic.2008.12.022 CrossRefPubMedGoogle Scholar
  68. Wang CS, Tang KFJ, Kou GH, Chen SN (1997) Light and electron microscopic evidence of white spot disease in the giant tiger shrimp, Penaeus monodon (Fabricius), and the kuruma shrimp, Penaeus japonicus (Bate), cultured in Taiwan. J Fish Dis 20:323–331. doi: 10.1046/j.1365-2761.1997.00301.x CrossRefGoogle Scholar
  69. Whittington RJ, Chong R (2007) Global trade in ornamental fish from an Australian perspective: the case for revised import risk analysis and management strategies. Prev Vet Med 81:92–116. doi: 10.1016/j.prevetmed.2007.04.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. Mrugała
    • 1
  • E. Kozubíková-Balcarová
    • 1
  • C. Chucholl
    • 2
  • S. Cabanillas Resino
    • 1
  • S. Viljamaa-Dirks
    • 3
  • J. Vukić
    • 1
  • A. Petrusek
    • 1
  1. 1.Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Fisheries Research Station Baden-WürttembergLangenargenGermany
  3. 3.OIE Reference Laboratory for Crayfish PlagueFinnish Food Safety Authority EviraKuopioFinland

Personalised recommendations