Biological Invasions

, Volume 17, Issue 4, pp 1095–1108 | Cite as

Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality

  • Soraya Constán-NavaEmail author
  • Santiago Soliveres
  • Rubén Torices
  • Lluís Serra
  • Andreu Bonet
Original Paper


Most existing studies addressing the effects of invasive species on biodiversity focus on species richness ignoring better indicators of biodiversity and better predictors of ecosystem functioning such as the diversity of evolutionary histories (phylodiversity). Moreover, no previous study has separated the direct effect of alien plants on multiple ecosystem functions simultaneously (multifunctionality) from those indirect ones mediated by the decrease on biodiversity caused by alien plants. We aimed to analyze direct and indirect effects, mediated or not by its effect on biodiversity, of the invasive tree Ailanthus altissima on ecosystem multifunctionality of riparian habitats under Mediterranean climate. We measured vegetation attributes (species richness and phylodiversity) and several surrogates of ecosystem functioning (understory plant biomass, soil enzyme activities, available phosphorous and organic matter) in plots infested by A. altissima and in control (non-invaded) ones. We used structural equation modelling to tease apart the direct and indirect effects of A. altissima on ecosystem multifunctionality. Our results suggest that lower plant species richness, phylodiversity and multifunctionality were associated to the presence of A. altissima. When analyzing each function separately, we found that biodiversity has the opposite effect of the alien plant on all the different functions measured, therefore reducing the strength of the effect (either positive or negative) of A. altissima on them. This is one of the few existing studies addressing the effect of invasive species on phylodiversity and also studying the effect of invasive species on multiple ecosystem functions simultaneously.


Biodiversity Ecosystem function Invasive species Path analysis Phylodiversity Riparian forests 



We thank Language Centre (University of Alicante) for improving the English of this manuscript. We are grateful for the collaboration of the staff at the Carrascal de la Font Roja and Sierra de Mariola Natural Parks. M. J. Nava, A. Constán, E. Pastor, A. Dávila, E. Rico and the rest of collaborators helped with the fieldwork. F. T. Maestre, Y. Valiñani, A. Sanz and P. Alonso helped with the enzymatic assays. This research and SCN PhD fellowship were supported by the ESTRES Project (063/SGTB/2007/7.1) and RECUVES Project (077/RN08/04.1) founded by the Spanish Ministerio de Medio Ambiente and BAHIRA CICYT project (CGL2008-03649/BTE) founded by the Spanish Ministerio de Ciencia y Tecnología. Font Roja Natura UA Scientific Station (ECFRN UA), depending on the Pro-Vice-Chancellorship for Research, Development and Innovation (VIDI) of the University of Alicante, supported also this research. SS was supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 242658 (BIOCOM). RT was partially supported by a postdoctoral scholarship from the Spanish Ministerio de Educación (BVA 2010-0375).

Supplementary material

10530_2014_780_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2,609 kb)


  1. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. Plymouth, PRIMER-EGoogle Scholar
  2. Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  3. Bell CD, Soltis DE, Soltis P (2010) The age and diversification of angiosperms re-revisited. Am J Bot 97:1296–1303CrossRefPubMedGoogle Scholar
  4. Bennett JA, Stotz GC, Cahill JF (2014) Patterns of phylogenetic diversity are linked to invasion impacts, not invasion resistance, in a native grassland. J Veg Sci. doi: 10.1111/jvs.12199 Google Scholar
  5. Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA (2009) Phylogenomics of C4 Photosynthesis in Sedges (Cyperaceae): multiple appearances and genetic convergence. Mol Biol Evol 26:1909–1919CrossRefPubMedGoogle Scholar
  6. Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Van de Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol phylogenet Evol 47:488–505CrossRefPubMedGoogle Scholar
  7. Bremer B, Eriksson T (2009) Time tree of Rubiaceae: phylogeny and dating the family, subfamilies, and tribes. Int J Plant Sci 170:766–793CrossRefGoogle Scholar
  8. Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Natl Acad Sci USA 108:5302–5307CrossRefPubMedCentralPubMedGoogle Scholar
  9. Burns RG, DeForest JL, Marxsenc J, Sinsabaughd RL, Strombergere ME, Wallensteinf MD, Weintraubg MN, Zoppinih A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234CrossRefGoogle Scholar
  10. Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017CrossRefPubMedCentralPubMedGoogle Scholar
  11. Cantero JJ, Liira J, Cisneros JM, Gonzalez J, Nuñez C, Petryna L, Cholaky C, Zobel M (2003) Species richness, alien species and plant traits in Central Argentine mountain grasslands. J Veg Sci 14:129–136CrossRefGoogle Scholar
  12. Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time due to complementary resource use: a meta-analysis. Proc Natl Acad Sci USA 104:18123–18128CrossRefPubMedCentralPubMedGoogle Scholar
  13. Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in central Spain. Biol Invasions 11:1973–1986CrossRefGoogle Scholar
  14. Castro-Díez P, Fierro-Brunnenmeister N, González-Muñoz N, Gallardo A (2012) Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191CrossRefGoogle Scholar
  15. CMA (1973) Determinaciones analíticas de suelos. Normalización de métodos. I. pH, materia orgánica y nitrógeno. An Edafol Agrobiol 32:1153–1172Google Scholar
  16. Constán-Nava S, Bonet A, Terrones B, Albors JL (2007) Plan de actuación para el control de la especie Ailanthus altissima en el Parque Natural del Carrascal de la Font Roja, Alicante. Bol Europarc 24:34–38Google Scholar
  17. Décamps H (1993) River margins and environmental change. Ecol Appl 3:441–445CrossRefGoogle Scholar
  18. Decreto 70/2009, de 22 de mayo, del Consell, por el que se crea y regula el Catálogo Valenciano de Especies de Flora Amenazadas y se regulan medidas adicionales de conservación [2009/5938]Google Scholar
  19. Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and floraGoogle Scholar
  21. Downie SR, Katz-Downie DS, Watson MF (2000) A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. Am J Bot 87:273–292CrossRefPubMedGoogle Scholar
  22. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523CrossRefGoogle Scholar
  23. Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proc Natl Acad Sci USA 105:6087–6090CrossRefPubMedCentralPubMedGoogle Scholar
  24. Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581CrossRefPubMedGoogle Scholar
  25. Follstad Shah JJ, Harner MJ, Tibbets TM (2010) Elaeagnus angustifolia elevates soil inorganic nitrogen pools in riparian ecosystems. Ecosystems 13(1):46–61CrossRefGoogle Scholar
  26. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş S, van der Bank M, Reeves G, Hedderson TA, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760CrossRefPubMedGoogle Scholar
  27. Forman RTT, Godron M (1986) Landscape ecology. John Wiley and Sons Inc, New YorkGoogle Scholar
  28. Funk VA, Anderberg AA, Baldwin BG et al (2009) Compositae metatrees: the next generation. In: Funk VA, Susana A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of Compositae. International Association for Plant Taxonomy, Vienna, pp 747–777Google Scholar
  29. Gaertner M, Breeyen AD, Hui C, Richardson DM (2009) Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog Phys Geogr 33:319–338CrossRefGoogle Scholar
  30. Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231CrossRefPubMedGoogle Scholar
  31. Godoy O, Castro-Diez P, Van Logtestijn RSP, Cornelissen JHC, Valladares F (2010) Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790CrossRefPubMedGoogle Scholar
  32. Gómez-Aparicio L, Canham CD (2008) Neighborhood models of the effects of invasive tree species on ecosystem processes. Ecol Monogr 78:69–86CrossRefGoogle Scholar
  33. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UKGoogle Scholar
  34. Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–190CrossRefPubMedGoogle Scholar
  35. Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972CrossRefPubMedGoogle Scholar
  36. Hejda M, de Bello F (2013) Impact of plant invasions on functional diversity in the vegetation of Central Europe. J Veg Sci. doi: 10.1111/jvs.12026
  37. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169:E68–E83CrossRefPubMedGoogle Scholar
  38. Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149CrossRefGoogle Scholar
  39. Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  40. Hulme PE, Bremner ET (2006) Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. J Appl Ecol 43:43–50CrossRefGoogle Scholar
  41. Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci USA 110:11911–11916Google Scholar
  42. Jax K (2010) Ecosystem functioning. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436CrossRefGoogle Scholar
  44. Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77CrossRefGoogle Scholar
  45. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefPubMedGoogle Scholar
  46. Kowarik I (1983) Colonization by the tree of heaven (Ailanthus altissima) in the French mediterranean region (Bas-Languedoc) and its phytosociological characteristics. Phytocoenology 11:389–405CrossRefGoogle Scholar
  47. Kowarik I, Säumel I (2007) Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol Evol Syst 8:207–237CrossRefGoogle Scholar
  48. Kowarik I, von der Lippe M (2006) Long-distance dispersal of Ailanthus altissima along road corridors through secondary dispersal by wind. BfN-Skripten 177:184Google Scholar
  49. Kowarik I, von der Lippe M (2011) Secondary wind dispersal enhances long-distance dispersal of an invasive species in urban road corridors. NeoBiota 9:49–70CrossRefGoogle Scholar
  50. Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283CrossRefPubMedGoogle Scholar
  51. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594CrossRefPubMedGoogle Scholar
  52. Lawrence JG, Colwell A, Sexton OJ (1991) The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am J Bot 78:948–958CrossRefGoogle Scholar
  53. Levine JM, D´Antonio CM, Dukes JS, Grigulus K, Lavorel S, Vilà M (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond 270:775–781CrossRefGoogle Scholar
  54. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714CrossRefPubMedGoogle Scholar
  55. Maestre FT, Puche MD (2009) Indices based on surface indicators predict soil functioning in Mediterranean semiarid steppes. Appl Soil Ecol 41:342–350CrossRefGoogle Scholar
  56. Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 100:317–330CrossRefGoogle Scholar
  57. Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S et al (2012b) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218CrossRefPubMedCentralPubMedGoogle Scholar
  58. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748CrossRefPubMedGoogle Scholar
  59. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345CrossRefGoogle Scholar
  60. Meffin R, Miller AL, Hulme PE, Duncan RP (2010) Experimental introduction of the alien weed Hieracium lepidulum reveals no significant impact on montane plant communities in New Zealand. Divers Distrib 16:804–815CrossRefGoogle Scholar
  61. Milcu A, Allan E, Roscher C, Jenkins T, Meyer ST, Flynn D, Bessler H, Buscot F, Engels C, Gubsch M, König S, Lipowsky A, Loranger J, Renker C, Scherber C, Schmid B, Thébault E, Wubet T, Weisser WW, Scheu S, Eisenhauer N (2013) Functionally and phylogenetically diverse plant communities key to soil biota. Ecology 94:1878–1885CrossRefPubMedGoogle Scholar
  62. Mooney HA, Drake JA (1986) Ecology of biological invasion of North America and Hawaii. Springer-Verlag, New York, p 321CrossRefGoogle Scholar
  63. Motard E, Muratet A, Clair-Maczulajtys D, Machon N (2011) Does the invasive species Ailanthus altissima threaten floristic diversity of temperate peri-urban forests? Comptes Rendus Biol 12:872–879CrossRefGoogle Scholar
  64. Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625CrossRefGoogle Scholar
  65. Potter D, Eriksson T, Evans RC, Oh SH, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault MP, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43CrossRefGoogle Scholar
  66. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for Phylogenetic conservatism. Proc R Soc Lond 268:2383–2389CrossRefGoogle Scholar
  67. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737CrossRefGoogle Scholar
  68. Reich PB, Oleksyn J, Modrzynski J et al (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818CrossRefGoogle Scholar
  69. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505CrossRefPubMedGoogle Scholar
  70. Santoro R, Jucker T, Carboni M, Acosta ATR (2012) Patterns of plant community assembly in invaded and non-invaded communities along a natural environmental gradient. J Veg Sci 23:483–494CrossRefGoogle Scholar
  71. Säumel I, Kowarik I (2010) Urban rivers as dispersal corridors for primarily wind–dispersed invasive tree species. Landsc Urban Plan 94:244–249CrossRefGoogle Scholar
  72. Säumel I, Kowarik I (2013) Propagule morphology and river characteristics shape secondary water dispersal in tree species. Plant Ecol 214:1257–1272CrossRefGoogle Scholar
  73. Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18:561–566CrossRefGoogle Scholar
  74. Serra L, Pérez Rovira P, Deltoro V, Fabregat C, Laguna E, Pérez Botella J (2003) Distribution, status and conservation of rare relict plant species in the Valencian Community. Bocconea 16:857–863Google Scholar
  75. Serra L, Conca A, Lara N, Pérez Botella J, García Alonso F (2006) Adiciones y correcciones a la orquidoflora valenciana, II. Toll Negre 7:5–8Google Scholar
  76. Shipley B (2000) Cause and correlation in biology: A user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, UKCrossRefGoogle Scholar
  77. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  78. Simberloff D, Relva MA, Nuñez M (2003) Introduced species and management of a Nothofagus/Austrocedrus forest. Environ Manag 31:263–275CrossRefGoogle Scholar
  79. Sinsabaugh RL, Lauber CL, Weintraub MN et al (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264PubMedGoogle Scholar
  80. Soliveres S, Torices R, Maestre FT (2012) Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant-plant interactions. Oikos 121:1638–1648CrossRefGoogle Scholar
  81. Steele KP, Ickert-Bond SM, Zarre S, Wojciechowski MF (2010) Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid trnK/matK and nuclear GA3ox1 sequences. Am J Bot 97:1142–1155CrossRefPubMedGoogle Scholar
  82. Tabacchi E, Lambs L, Guilloy H, Planty-Tabacchi AM, Muller E, Décamps H (2000) Impacts of riparian vegetation on hydrological processes. Hydrol Process 14:2959–2976CrossRefGoogle Scholar
  83. Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. American Society of Agronomy, Madison, pp 943–947Google Scholar
  84. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307CrossRefGoogle Scholar
  85. Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Monographs in population biology 26. Princeton University Press, PrincetonGoogle Scholar
  86. Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861CrossRefPubMedCentralPubMedGoogle Scholar
  87. Torices R (2010) Adding time-calibrated branch lengths to the Asteraceae supertree. J Syst Evol 48:271–278CrossRefGoogle Scholar
  88. Traveset A, Brundu B, Carta M et al (2008) Consistent performance of invasive plant species within and among islands of the Mediterranean basin. Biol Invasions 10:847–858CrossRefGoogle Scholar
  89. Tu M (2003) Element stewardship abstract: Elaeagnus angustifolia L., [Online]. In: Invasives on the web: the nature conservancy wildland invasive species program. Davis, CA: The Nature Conservancy (Producer)Google Scholar
  90. Vacher C, Daudin JJ, Piou D, Desprez-Loustau ML (2010) Ecological integration of alien species into a tree–parasitic fungus network. Biol Invasions 12:3249–3259CrossRefGoogle Scholar
  91. Vamosi SM, Heard SB, Vamosi JC, Webb CO (2009) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18:572–592CrossRefPubMedGoogle Scholar
  92. Vilà M, Tessier M, Suehs CM et al (2006) Local and regional assessment of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861CrossRefGoogle Scholar
  93. Vilà M, Espinar J, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRefPubMedGoogle Scholar
  94. Vitousek PM (1986) Biological invasions and ecosystem properties: can species make a difference? In: Mooney GA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Springer-Verlag, New York, pp 163–178CrossRefGoogle Scholar
  95. Vitousek PM, Mooney HA, Lubchenco J, Melillo J (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  96. Wang W, Manchester SR, Li C, Geng B (2010) Fruits and leaves of Ulmus from the paleogene of Fushun, Northeastern China. Int J Plant Sci 171:221–226CrossRefGoogle Scholar
  97. Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Proc Soil Sci Soc Am 29:677–678CrossRefGoogle Scholar
  98. Webb C, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  99. Webb C, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100CrossRefPubMedGoogle Scholar
  100. Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J Chem Ecol 36:59–69CrossRefPubMedGoogle Scholar
  101. Weintraub MN, Schimel JP (2005) The seasonal dynamics of amino acids and other nutrients in Alaskan arctic tundra soils. Biogeochemistry 73:359–380CrossRefGoogle Scholar
  102. Williamson M (1998) Measuring the impact of plant invaders in Britain. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions: ecological mechanism and human responses. Backhuys Plublishers, Leiden. The Netherlands, pp 57–68Google Scholar
  103. Winkworth RC, Bell CD, Donoghue MJ (2008) Mitochondrial sequence data and Dipsacales phylogeny: mixed models, partitioned Bayesian analyses, and model selection. Mol Phylogenet Evol 46:830–843CrossRefPubMedGoogle Scholar
  104. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487CrossRefGoogle Scholar
  105. Zasada JC, Little S (2002) Ailanthus altissima (P. Mill.) Swingle. In: Bonner, Franklin T (eds). Woody plant seed manual, [Online]. Washington, DC: U.S. Department of Agriculture, Forest Service (Producer)Google Scholar
  106. Zavaleta ES, Pasari JR, Hulvey KB, Tilman DG (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci USA 107:1443–1446CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Soraya Constán-Nava
    • 1
    Email author
  • Santiago Soliveres
    • 2
    • 3
  • Rubén Torices
    • 4
  • Lluís Serra
    • 5
  • Andreu Bonet
    • 1
    • 6
  1. 1.Estación Científica Font Roja Natura UAUniversidad de AlicanteAlcoiSpain
  2. 2.Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
  3. 3.Institute of Plant SciencesUniversity of BernBernSwitzerland
  4. 4.Departamento de Ciências da Vida, Centro de Ecologia FuncionalUniversidade de CoimbraCoimbraPortugal
  5. 5.Conselleria d’Infraestructures, Territori i Medi AmbientGeneralitat ValencianaAlacantSpain
  6. 6.Instituto Multidisciplinar para el Estudio del Medio Ramón MargalefUniversidad de AlicanteAlicanteSpain

Personalised recommendations