Biological Invasions

, Volume 17, Issue 4, pp 1041–1054 | Cite as

Areas of high conservation value in Georgia: present and future threats by invasive alien plants

  • Daniela Julia Klara Thalmann
  • David Kikodze
  • Manana Khutsishvili
  • David Kharazishvili
  • Antoine Guisan
  • Olivier Broennimann
  • Heinz Müller-Schärer
Original Paper


Georgia is known for its extraordinary rich biodiversity of plants, which may now be threatened due to the spread of invasive alien plants (IAP). We aimed to identify (1) the most prominent IAP out of 9 selected potentially invasive and harmful IAP by predicting their distribution under current and future climate conditions in Georgia as well as in its 43 Protected Areas, as a proxy for areas of high conservation value and (2) the Protected Areas most at risk due to these IAP. We used species distribution models based on 6 climate variables and then filtered the obtained distributions based on maps of soil and vegetation types, and on recorded occurrences, resulting into the predicted ecological distribution of the 9 IAP’sat a resolution of 1 km2. Our habitat suitability analysis showed that Ambrosia artemisiifolia, (24 and 40 %) Robinia pseudoacaia (14 and 19 %) and Ailanthus altissima (9 and 11 %) have the largest potential distribution (predicted % area covered), with A. altissima the potentially most increasing one over the next 50 years (from 9 to 13 % and from 11 to 25 %), for Georgia and the Protected Areas, respectively. Furthermore, our results indicate two areas in Georgia that are under specifically high threat, i.e. the area around Tbilisi and an area in the western part of Georgia (Adjara), both at lower altitudes. Our procedure to identify areas of high conservation value most at risk by IAP has been applied for the first time. It will help national authorities in prioritizing their measures to protect Georgia’s outstanding biodiversity from the negative impact of IAP.


Biological invasion Biodiversity Protected Areas Species distribution models SDM Climate change Conservation 

Supplementary material

10530_2014_774_MOESM1_ESM.docx (113 kb)
Supplementary material 1 (DOCX 112 kb)
10530_2014_774_MOESM2_ESM.docx (64 kb)
Supplementary material 2 (DOCX 64 kb)
10530_2014_774_MOESM3_ESM.docx (845 kb)
Supplementary material 3 (DOCX 845 kb)
10530_2014_774_MOESM4_ESM.docx (73 kb)
Supplementary material 4 (DOCX 72 kb)


  1. Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Consortium M (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci 108:656–661CrossRefPubMedCentralPubMedGoogle Scholar
  2. Allouche O, Tsoar A, Kadmon RO (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  3. Anonymous (2009) Agency of Protected Areas Georgia. Ministry of Environmental Protection and Natural Resources of Georgia.
  4. Anonymous (2012) Conservation international.
  5. Anonymous (2012) ELAW, Environmental law alliance worldwide.
  6. Anonymous (2012) IUCN, International union for conservation of nature.
  7. Anonymous (2012) WorldClim global climate data.
  8. Anonymous (2012) WWF, world wildlife found.
  9. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688CrossRefGoogle Scholar
  10. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Chang Biol 14:529–538Google Scholar
  11. Bartlein PJ, Prentice IC, Webb T (1986) Climatic response surfaces from pollen data for some eastern North American taxa. J Biogeogr 13:35–57CrossRefGoogle Scholar
  12. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Townsend Peterson A, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modelling. Ecol Model 11:1810–1819CrossRefGoogle Scholar
  13. Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420CrossRefGoogle Scholar
  14. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339CrossRefPubMedGoogle Scholar
  15. Bohn U, Gollub G, Hettwer C, Neuhäuslová Z, Raus TH, Schlüter H, Weber H (2004) Karte der natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe, Maßstab/Scale 1:2.500.000, Interaktive/Interactive CD-ROM- Erläuterungstext, Legende, Karten/Explanatory Text, Legend, Maps. Landwirtschaftsverlag, MünsterGoogle Scholar
  16. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300CrossRefGoogle Scholar
  17. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  18. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded range matters. Biol Lett 4:585–589CrossRefPubMedCentralPubMedGoogle Scholar
  19. Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of niche shift during biological invasion. Ecol Lett 10:701–709CrossRefPubMedGoogle Scholar
  20. Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61CrossRefPubMedGoogle Scholar
  21. Bustamante J, Seoane J (2004) Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps. J Biogeogr 31:295–306CrossRefGoogle Scholar
  22. Cacho O, Hester S, Spring D (2007) Applying search theory to determine the feasibility of eradicating an invasive population in natural environments. Aust J Agric Resour Econ 51:425–443CrossRefGoogle Scholar
  23. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  24. Cousins MM, Briggs J, Gresham C, Whetstone J, Whitwell T (2010) Beach Vitex (Vitex rotundifolia): an invasive costal species. Invasive Plant Species Manag 3:340–345CrossRefGoogle Scholar
  25. Dirnbock T, Greimler J, Lopez P, Stuessy TF (2003) Predicting future threats to the native vegetation of Robinson Crusoe Island, Juan Fernandez Archipelago, Chile. Conserv Biol 17:1650–1659CrossRefGoogle Scholar
  26. Dudley N (ed.) (2008) Guidelines for applying protected area management categories. Gland, Switzerland: IUCN. x + 86 pp. ISBN: 978-2-8317-1086-0Google Scholar
  27. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80CrossRefGoogle Scholar
  28. Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol Lett 13:528–541CrossRefPubMedGoogle Scholar
  29. EPPO, European and Mediterranean Plant protection Organisation (2014)
  30. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRefGoogle Scholar
  31. Guisan A, Rahbek C (2011) SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444CrossRefGoogle Scholar
  32. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  33. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435CrossRefPubMedCentralPubMedGoogle Scholar
  34. Gurevitch J, Fox GA, Wardle GM, Inderjit, Taub D (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418CrossRefPubMedGoogle Scholar
  35. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543CrossRefPubMedGoogle Scholar
  36. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  37. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152CrossRefGoogle Scholar
  38. IPCC Climate Change (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, CambridgeGoogle Scholar
  39. Kikodze A, Gokhelashvili R (eds.) (2007) Protected Areas of Georgia. Tbilisi. Report for the Swiss federal Office of the Environment, p. 37Google Scholar
  40. Kikodze D, Memiadze N, Kharazishvili D, Manvelidze Z, Müller-Schärer H (2010) The alien flora of GeorgiaGoogle Scholar
  41. Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman MA, Dehnen-Schmutz K, Essl F, Hulme PE, Richardson DM, Sol D, Vilà M (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493CrossRefPubMedGoogle Scholar
  42. Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Conservation International, Washington, p 392Google Scholar
  43. Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2012) Global biodiversity conservation? The critical role of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots distribution and protection of conservation priority areas. Springer, Berlin, Heidelberg, pp 3–22Google Scholar
  44. Müller-Schärer H, Collins AR (2012) Integrated weed management. In: Jorgensen SE (ed) Encyclopedia of environmental management. Taylor and Francis, New YorkGoogle Scholar
  45. Nogues-Bravo D, Rahbek C (2011) Communities under climate change. Science 334:1070–1071CrossRefPubMedGoogle Scholar
  46. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19CrossRefGoogle Scholar
  47. Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Billeter R, Cavieres L, Guisan A, Haider S, Jakobs G, Mack RN, McDougall K, Millar C, Naylor BJ, Parks C, Poll M, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching high elevations. Front Ecol Environ 7:479–486CrossRefGoogle Scholar
  48. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501CrossRefPubMedGoogle Scholar
  49. Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348CrossRefPubMedGoogle Scholar
  50. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  51. Phillips SJ, Andersonb RP, Schapire RP (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  52. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18:1725–1737CrossRefPubMedCentralGoogle Scholar
  53. R Development Core Team (2011) R: a language and environment for statistical computing, 3-900051-07-0RGoogle Scholar
  54. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6(2):93–107CrossRefGoogle Scholar
  55. Richter R, Berger UE, Dullinger S, Essl F, Leitner M, Smith M, Vogl G (2013) Spread of invasive ragweed: climate change, management and how to reduce allergy costs. J Appl Ecol 50(6):1422–1430CrossRefGoogle Scholar
  56. Rodriguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251CrossRefGoogle Scholar
  57. Seipel T, Kueffer C, Rew L, Daehler C, Pauchard A, Naylor B, Alexander JM, Edwards PJ, Parks CG, Arevalo J, Cavieres L, Dietz H, Jakobs G, McDougall K, Otto R, Walsh N (2012) Processes at multiple spatial scales determine non-native plant species richness and similarity in mountain regions around the world. Glob Ecol Biogeogr 21:236–246CrossRefGoogle Scholar
  58. Sun Y, Collins AR, Schaffner U, Müller-Schärer H (2013) Dissecting impact of plant invaders: do invaders behave differently in the new range? Ecology 94:2124–2130CrossRefPubMedGoogle Scholar
  59. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250CrossRefGoogle Scholar
  60. ThuillerW Lafourcade B, Engler R, Araújo B (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  61. Vicente J, Randin CF, Goncalves J, Metzger MJ, Lomba A, Honrado J, Guisan A (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13:1209–1227CrossRefGoogle Scholar
  62. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniela Julia Klara Thalmann
    • 1
  • David Kikodze
    • 2
  • Manana Khutsishvili
    • 2
  • David Kharazishvili
    • 3
  • Antoine Guisan
    • 4
  • Olivier Broennimann
    • 4
  • Heinz Müller-Schärer
    • 1
  1. 1.Department of Biology, Ecology and EvolutionUniversity of FribourgFribourgSwitzerland
  2. 2.Institute of BotanyIlia State UniversityTbilisiGeorgia
  3. 3.Batumi Botanical GardenBatumiGeorgia
  4. 4.University of LausanneLausanneSwitzerland

Personalised recommendations