Advertisement

Biological Invasions

, Volume 17, Issue 3, pp 851–867 | Cite as

Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms

  • Michael N DawsonEmail author
  • Kristin Cieciel
  • Mary Beth Decker
  • Graeme C. Hays
  • Cathy H. Lucas
  • Kylie A. Pitt
Molecular Tools

Abstract

Whether a perceived increase in the abundance of jellyfishes is related to changing marine environments has been considered primarily using large-scale analyses of multi-species assemblages. Yet jellyfish blooms—rapid increases in the biomass of pelagic coelenterate species—are single-species demographic events. Using published and new genetic analyses and population surveys, we investigate whether there may be a critical knowledge gap between the scales of recent analyses and the scales of natural phenomena. We find that scyphomedusae may show population genetic structure over scales of tens to hundreds of kilometers, that environments vary regionally and locally, and that populations of medusae can display uncorrelated dynamics on these scales. These findings suggest genetic differences between populations and/or environmental differences between sites are important determinants of population dynamics in these jellyfishes. Moreover, the local abundance of medusae may be most strongly correlated with preceding rather than current local environmental conditions, indicating there is a cumulative time-course to the formation of ‘blooms’. Broad-scale macro-ecological analyses will need to build from coordinated, long-term, fine-grained studies to synthesize, rather than mask, population-level phenomena in larger-scale analyses.

Keywords

Climate Discomedusae Dispersal Environmental change Plankton Scyphozoa 

Notes

Acknowledgments

We thank Keith M. Bayha and Sarah Abboud who sequenced Aurelia aurita and Chrysaora melanaster, and Coral Reef Research Foundation who conducted the surveys of Mastigias papua and collected matching environmental data in Palau. We also thank the scientific staff from the BASIS project and the fishing crews of the F/V Sea Storm and F/V Northwest Explorer F/V Epic Explorer, R/V Oscar Dyson, and F/V Bristol Explorer for their considerable efforts and technical assistance in all aspects of the field surveys, without whose help the Bering Sea work would have been impossible. Two anonymous reviewers helpfully critiqued an earlier version of the paper allowing us to refine its message. This research was supported in part by National Science Foundation Grant no. DEB-07-17071 and presented as a work-in-progress at the MOLTOOLS workshop held in Lecce in September 2012; support for participation by MND in the MOLTOOLS workshop was provided by the European Community’s Seventh Framework Programme (FP7/2011-2015) for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS). Use of trade names does not imply endorsement by the National Marine Fisheries service, NOAA.

References

  1. Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y et al (2011) Productivity is a poor predictor of plant species richness. Science 333:1750–1753CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bayha KM, Graham WM (2014) Nonindigenous marine jellyfish: invasiveness, invisibility and impacts. In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Berlin, pp 45–77CrossRefGoogle Scholar
  4. Bayha KM, Dawson MN, Collins AG, Barbeitos MS, Haddock SHD (2010) Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integr Comp Biol 50:436–455CrossRefPubMedGoogle Scholar
  5. Blanchette CA, Miner CM, Raimondi PT, Lohse D, Heady KEK, Broitman BR (2008) Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J Biogeogr 35:1593–1607CrossRefGoogle Scholar
  6. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83CrossRefPubMedGoogle Scholar
  7. Brodeur RD, Wilson MT, Napp JM (1997) Distribution of juvenile Pollock relative to frontal structure near the Pribilof Islands, Bering Sea. In: Forage fishes in marine ecosystems, American Fisheries Society, Lowell Wakefield Fisheries Symposium Series, no. 14, pp 573–589Google Scholar
  8. Brodeur RD, Decker MB, Ciannelli L, Purcell JE, Bond NA, Stabeno PJ, Acuna E, Hunt GL Jr (2008) The rise and fall of jellyfish in the Bering Sea in relation to climate regime shifts. Prog Oceanogr 77:103–111CrossRefGoogle Scholar
  9. Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D (2012) Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690:3–20CrossRefGoogle Scholar
  10. Carvalho GR, Hauser L (1995) Molecular genetics and the stock concept in fisheries. In: Carvalho GR, Pitcher TJ (eds) Molecular genetics in fisheries. Springer, Berlin, pp 55–79CrossRefGoogle Scholar
  11. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660CrossRefPubMedGoogle Scholar
  12. Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, Uye S-I, Gelcich S (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62:160–169CrossRefGoogle Scholar
  13. Condon RH, Duarte CM, Pitt KA, Robinson KL, Lucas CH, Sutherland KR, Mianzan HW, Bogeberg M, Purcell JE, Decker MB, Uye S-I, Madin LP, Brodeur RD, Haddock SHD, Malej A, Parry GD, Eriksen E, Quiñones J, Acha M, Harvey M, Arthur JM, Graham WM (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences USA, vol 110, pp 1000–1005. www.pnas.org/cgi/doi/10.1073/pnas.1210920110
  14. Daryanabard R, Dawson MN (2008) Jellyfish blooms: Crambionella orsini (Scyphozoa, Rhizostomeae) in the Gulf of Oman, Iran, 2002–2003. J Mar Biol Assoc UK 88:477–483CrossRefGoogle Scholar
  15. Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ et al (2011) Don’t judge species on their origins. Nature 474:153–154CrossRefPubMedGoogle Scholar
  16. Dawson MN (2005a) Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia. J Biogeogr 32:515–533. doi: 10.1111/j.1365-2699.2004.01193.x CrossRefGoogle Scholar
  17. Dawson MN (2005b) Five new subspecies of Mastigias (Scyphozoa, Rhizostomeae, Mastigiidae) from marine lakes, Palau, Micronesia. J Mar Biol Assoc UK 85:679–694CrossRefGoogle Scholar
  18. Dawson MN (2005c) Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in south-eastern Australia. Invertebr Syst 19:361–370. doi: 10.1071/is03035 CrossRefGoogle Scholar
  19. Dawson MN, Hamner WM (2005) Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proc Natl Acad Sci USA 102:9235–9240CrossRefPubMedCentralPubMedGoogle Scholar
  20. Dawson MN, Hortal J (2012) A cure for seeing double? Convergence and unification in biogeography and ecology. Front Biogeogr 4:3–6Google Scholar
  21. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96. doi: 10.2307/1543089 CrossRefPubMedGoogle Scholar
  22. Dawson MN, Martin LE (2001) Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451:259–273. doi: 10.1023/a:1011869215330 CrossRefGoogle Scholar
  23. Dawson MN, Raskoff KA, Jacobs DK (1998) Field preservation of marine invertebrate tissue for DNA analyses. Mol Mar Biol Biotechnol 7:145–152PubMedGoogle Scholar
  24. Dawson MN, Gupta AS, England MH (2005) Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proc Natl Acad Sci USA 102:11968–11973CrossRefPubMedCentralPubMedGoogle Scholar
  25. Decker MB, Liu H, Ciannelli L, Ladd C, Cheng W, Chan KS (2013) Linking changes in eastern Bering Sea jellyfish populations to environmental factors via non-linear time series models. Mar Ecol Prog Ser 494:179–189CrossRefGoogle Scholar
  26. Decker MB, Cieciel K, Zavolokin A, Lauth R, Brodeur RD, Coyle KO (2014) Population fluctuations of jellyfish in the Bering Sea and their ecological role in this productive shelf ecosystem. In: Pitt K, Lucas C (eds) Jellyfish blooms. Springer, Berlin, pp 153–183CrossRefGoogle Scholar
  27. Duarte CM, Pitt KA, Lucas CH, Purcell JE, Uye S-I et al (2012) Is global ocean sprawl a cause of jellyfish blooms? Front Ecol Environ. doi: 10.1890/110246 Google Scholar
  28. Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154CrossRefPubMedGoogle Scholar
  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  30. Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. doi: 10.1029/2008JD010519 CrossRefGoogle Scholar
  31. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  32. Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  33. Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208CrossRefPubMedGoogle Scholar
  34. Gibbons MJ, Richardson AJ (2013) Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. J Plankton Res 35:929–938CrossRefGoogle Scholar
  35. Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222CrossRefGoogle Scholar
  36. Graham WM, Field JG, Potts DC (1992) Persistent “upwelling shadows” and their influence on zooplankton distributions. Mar Biol 114:561–570CrossRefGoogle Scholar
  37. Graham WM, Pagès F, Hamner WM (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199–212CrossRefGoogle Scholar
  38. Grenfell BT, Wilson K, Finkenstädt BF, Coulson TN, Murray S, Albon SD, Pemberton JM, Clutton-Brock TH, Crawley MJ (1998) Noise and determinism in synchronized sheep dynamics. Nature 394:674–677CrossRefGoogle Scholar
  39. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, Holmes EC (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303:327–332CrossRefPubMedGoogle Scholar
  40. Hallett TB, Coulson T, Pilkington JG, Clutton-Brock TH, Pemberton JM, Grenfell BT (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75CrossRefPubMedGoogle Scholar
  41. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi: 10.1126/science.1149345 CrossRefPubMedGoogle Scholar
  42. Halpern BS, Kappel CV, Selkoe KA, Micheli F, Ebert CM et al (2009) Mapping cumulative human impacts to California Current marine ecosystems. Conserv Lett 2:1–11CrossRefGoogle Scholar
  43. Hamner WM, Hamner PP (1998) Stratified marine lakes of Palau (Western Caroline Islands). Phys Geogr 19:175–220Google Scholar
  44. Hamner WM, Hauri IR (1981) Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias). Limnol Oceanogr 26:414–423CrossRefGoogle Scholar
  45. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi: 10.1111/j.1461-0248.2005.00871.x CrossRefPubMedGoogle Scholar
  46. Hinder SL, Gravenor MB, Edwards M, Ostle C, Bodger OG, Lee PLM, Walne AW, Hays GC (2012) Changes in marine dinoflagellate and diatom abundance under climate change. Nat Clim Chang 2:271–275CrossRefGoogle Scholar
  47. Holland BS, Dawson MN, Crow GL, Hofmann DK (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128. doi: 10.1007/s00227-004-1409-4 CrossRefGoogle Scholar
  48. Houghton JDR, Doyle T, Davenport J, Hays GC (2006) Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air. Mar Ecol Prog Ser 314:159–170CrossRefGoogle Scholar
  49. Jackson JBC (2008) Ecological extinction and evolution in the brave new ocean. Proc Natl Acad Sci USA 105:11458–11465CrossRefPubMedCentralPubMedGoogle Scholar
  50. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with ClustalX. Trends Biochem Sci 23:403–405CrossRefPubMedGoogle Scholar
  51. Kogovšek T, Bogunovic B, Malej A (2010) Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645:81–96CrossRefGoogle Scholar
  52. Lee PLM, Dawson MN, Neill SP, Robins PE, Houghton JDR, Doyle TK, Hays GC (2013) Identification of genetically and oceanographically distinct blooms of jellyfish. J R Soc Interface 10:20120920. doi: 10.1098/rsif.2012.0920 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Legaard KR, Thomas AC (2006) Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J Geophys Res Oceans 111:C06032. doi: 10.1029/2005JC003282 CrossRefGoogle Scholar
  54. Legaard KR, Thomas AC (2007) Spatial patterns of intraseasonal variability of chlorophyll and sea surface temperature in the California Current. J Geophys Res Oceans 112:C09006. doi: 10.1029/2007JC004097 CrossRefGoogle Scholar
  55. Lehtonen PK, Laaksonen T, Artemyev AV, Belskii E, Both C et al (2009) Geographic patterns of genetic differentiation and plumage colour variation are different in the pied flycatcher (Ficedula hypoleuca). Mol Ecol 18:4463–4476CrossRefPubMedGoogle Scholar
  56. Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden R, Carvalho GR, Consortium FPT, Bekkevold D (2012) Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 21:3686–3703CrossRefPubMedGoogle Scholar
  57. Lucas CH (1996) Population dynamics Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. J Plankton Res 18:987–1007CrossRefGoogle Scholar
  58. Lucas CH, Dawson MN (2014) What are jellyfish and thaliaceans and why do they bloom? In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Berlin, pp 9–44CrossRefGoogle Scholar
  59. Lucas CH, Lawes S (1998) Sexual reproduction of the scyphomedusa Aurelia aurita in relation to variable food supply. Mar Biol 131:629–638CrossRefGoogle Scholar
  60. Lucas CH, Williams JA (1994) Population dynamics of the scyphomedusa Aurelia aurita in Southampton Water. J Plankton Res 16:879–895CrossRefGoogle Scholar
  61. Lucas CH, Hirst AG, Williams JA (1997) Plankton dynamics and Aurelia aurita production from two contrasting ecosystems: comparisons and consequences. Estuar Coast Shelf Sci 45:209–219CrossRefGoogle Scholar
  62. Lucas CH, Pitt KA, Purcell JE, Lebrato M, Condon RH (2011) What’s in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 92:1704CrossRefGoogle Scholar
  63. Martin LE, Dawson MN, Bell LJ, Colin PL (2006) Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific. Biol Lett 2:144–147CrossRefPubMedCentralPubMedGoogle Scholar
  64. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68CrossRefGoogle Scholar
  65. Opgenoorth L, Faith DP (2013) The intergovernmental science-policy platform on biodiversity and ecosystem services (IPBES), up and walking. Front Biogeogr 5:207–211Google Scholar
  66. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  67. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  68. Patris SW, Dawson MN, Bell LJ, Martin LE, Colin PL, Ucharm G (2011) Ongeim’l Tketau. Coral Reef Research Foundation, KororGoogle Scholar
  69. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915CrossRefPubMedGoogle Scholar
  70. Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD et al (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci USA 110:6937–6942CrossRefPubMedCentralPubMedGoogle Scholar
  71. Pitt KA, Kingsford MJ (2000) Geographic separation of stocks of the edible jellyfish Catostylus mosaicus (Rhizostomeae) in New South Wales. Mar Ecol Prog Ser 196:143–155CrossRefGoogle Scholar
  72. Pitt KA, Kingsford MJ (2003) Temporal and spatial variation in recruitment and growth of medusae of the jellyfish, Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Freshw Res 54:117–125CrossRefGoogle Scholar
  73. Purcell JE (2005) Climate effects on formation of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc UK 85:461–476CrossRefGoogle Scholar
  74. Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu Rev Mar Sci 4:209–235CrossRefGoogle Scholar
  75. Purcell JE, Brown ED, Stokesbury KDE, Haldorson LH, Shirley TC (2000) Aggregations of the jellyfish Aurelia labiata: abundance, distribution, association with age-0 walleye pollock, and behaviors promoting aggregation in Prince William Sound, Alaska, U.S.A. Mar Ecol Prog Ser 195:145–158CrossRefGoogle Scholar
  76. Raskoff KA (2001) The impact of El Niño events on populations of mesopelagic hydromedusae. Hydrobiologia 451:121–129CrossRefGoogle Scholar
  77. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  78. Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24:312–322CrossRefPubMedGoogle Scholar
  79. Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535CrossRefGoogle Scholar
  80. StatSoft Inc (2006) Electronic statistics textbook. StatSoft, TulsaGoogle Scholar
  81. Stokstadt E (2010) To fight illegal fishing, forensic DNA gets local. Science 330:1468–1469CrossRefGoogle Scholar
  82. Stopar K, Ramšak A, Trontelj P, Malej A (2010) Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Mol Phylogenet Evol 57:417–428. doi: 10.1016/j.ympev.2010.07.004 CrossRefPubMedGoogle Scholar
  83. Suchman CL, Brodeur RD (2005) Abundance and distribution of large medusa in surface waters of the northern California Current. Deep-Sea Res II 52:51–72CrossRefGoogle Scholar
  84. Urban MC (2008) Ecological genetics. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi: 10.1002/9780470015902.a0021214
  85. Valéry L, Fritz H, Lefeuvre J-L, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 19:1345–1351CrossRefGoogle Scholar
  86. Valéry L, Fritz H, Lefeuvre J-L, Simberloff D (2009) Invasive species can also be native …. Trends Ecol Evol 24:585CrossRefPubMedGoogle Scholar
  87. Youngbluth MJ, Båmstedt U (2001) Distribution, abundance, behavior and metabolism of Periphylla periphylla, a mesopelagic coronate medusa in a Norwegian fjord. Hydrobiologia 451:321–333CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael N Dawson
    • 1
    Email author
  • Kristin Cieciel
    • 2
  • Mary Beth Decker
    • 3
  • Graeme C. Hays
    • 4
    • 5
  • Cathy H. Lucas
    • 7
  • Kylie A. Pitt
    • 6
  1. 1.School of Natural SciencesUniversity of CaliforniaMercedUSA
  2. 2.NOAA Fisheries, Auke Bay LaboratoriesAlaska Fisheries Science CenterJuneauUSA
  3. 3.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA
  4. 4.School of Life and Environmental SciencesDeakin UniversityWarrnamboolAustralia
  5. 5.Department of BiosciencesSwansea UniversitySwanseaUK
  6. 6.Australian Rivers Institute and Griffith School of EnvironmentGriffith UniversityGold CoastAustralia
  7. 7.Ocean & Earth Science, National Oceanography Centre University of Southampton Waterfront CampusSouthamptonUK

Personalised recommendations