Biological Invasions

, Volume 16, Issue 12, pp 2551–2561 | Cite as

Plant–soil feedbacks of exotic plant species across life forms: a meta-analysis

  • Annelein Meisner
  • W. H. Gera Hol
  • Wietse de Boer
  • Jennifer Adams Krumins
  • David A. Wardle
  • Wim H. van der Putten
Original Paper


Invasive exotic plant species effects on soil biota and processes in their new range can promote or counteract invasions via changed plant–soil feedback interactions to themselves or to native plant species. Recent meta-analyses reveale that soil influenced by native and exotic plant species is affecting growth and performance of natives more strongly than exotics. However, the question is how uniform these responses are across contrasting life forms. Here, we test the hypothesis that life form matters for effects on soil and plant–soil feedback. In a meta-analysis we show that exotics enhanced C cycling, numbers of meso-invertebrates and nematodes, while having variable effects on other soil biota and processes. Plant effects on soil biota and processes were not dependent on life form, but patterns in feedback effects of natives and exotics were dependent on life form. Native grasses and forbs caused changes in soil that subsequently negatively affected their biomass, whereas native trees caused changes in soil that subsequently positively affected their biomass. Most exotics had neutral feedback effects, although exotic forbs had positive feedback effects. Effects of exotics on natives differed among plant life forms. Native trees were inhibited in soils conditioned by exotics, whereas native grasses were positively influenced in soil conditioned by exotics. We conclude that plant life form matters when comparing plant–soil feedback effects both within and between natives and exotics. We propose that impact analyses of exotic plant species on the performance of native plant species can be improved by comparing responses within plant life form.


Alien plant species Exotic plant species Life form Meta-analysis Plant invasions Plant–soil feedback Plant–soil interactions Soil legacies 

Supplementary material

10530_2014_685_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1208 kb)


  1. Adams DC, Gurevitch J, Rosenberg MS (1997) Resampling tests for meta-analysis of ecological data. Ecology 78(4):1277–1283. doi:10.1890/0012-9658(1997)078[1277:rtfmao];2 Google Scholar
  2. Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86(11):2979–2989. doi:10.1890/05-0219 CrossRefGoogle Scholar
  3. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157(3):465–473. doi:10.1046/j.1469-8137.2003.00714.x CrossRefGoogle Scholar
  4. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85(5):561–573CrossRefGoogle Scholar
  5. Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25(8):468–478. doi:10.1016/j.tree.2010.05.004 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, West SussexCrossRefGoogle Scholar
  7. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2(8):436–443. doi:10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2 CrossRefGoogle Scholar
  8. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427(6976):731–733. doi:10.1038/nature02322 PubMedCrossRefGoogle Scholar
  9. Casper BB, Castelli JP (2007) Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecol Lett 10(5):394–400. doi:10.1111/j.1461-0248.2007.01030.x PubMedCrossRefGoogle Scholar
  10. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11(10):1065–1071. doi:10.1111/j.1461-0248.2008.01219.x PubMedCrossRefGoogle Scholar
  11. Cortois R, De Deyn GB (2012) The curse of the black box. Plant Soil 350(1–2):27–33. doi:10.1007/s11104-011-0963-z CrossRefGoogle Scholar
  12. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14(4):419–431. doi:10.1111/j.1461-0248.2011.01596.x PubMedCrossRefGoogle Scholar
  13. Diez JM, Dickie I, Edwards G, Hulme PE, Sullivan JJ, Duncan RP (2010) Negative soil feedbacks accumulate over time for non-native plant species. Ecol Lett 13(7):803–809. doi:10.1111/j.1461-0248.2010.01474.x PubMedCrossRefGoogle Scholar
  14. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115. doi:10.1146/ CrossRefGoogle Scholar
  15. Engelkes T, Morriën E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456(7224):946–948. doi:10.1038/nature07474 PubMedCrossRefGoogle Scholar
  16. Eppinga MB, Rietkerk M, Dekker SC, de Ruiter PC, van der Putten WH (2006) Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos 114(1):168–176. doi:10.1111/j.2006.0030-1299.14625.x CrossRefGoogle Scholar
  17. Fitzsimons MS, Miller RM (2010) The importance of soil microorganisms for maintaining diverse plant communities in tallgrass prairie. Am J Bot 97(12):1937–1943. doi:10.3732/ajb.0900237 PubMedCrossRefGoogle Scholar
  18. Godoy O, Castro-Diez P, Van Logtestijn RSP, Cornelissen JHC, Valladares F (2010) Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162(3):781–790. doi:10.1007/s00442-009-1512-9 PubMedCrossRefGoogle Scholar
  19. Grman E, Suding KN (2010) Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restor Ecol 18(5):664–670. doi:10.1111/j.1526-100X.2008.00497.x CrossRefGoogle Scholar
  20. Gundale MJ, Kardol P, Nilsson M-C, Nilsson U, Lucas RW, Wardle DA (2014) Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytol (in press). doi:10.1111/nph.12699
  21. Gurevitch J, Hedges LV (2001) Meta-analysis: combining the results of independent experiments. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford, pp 347–369Google Scholar
  22. Gurevitch J, Curtis PS, Jones MH (2001) Meta-analysis in ecology. Adv Ecol Res 32:199–247. doi:10.1016/s0065-2504(01)32013-5 CrossRefGoogle Scholar
  23. Hawkes CV, Belnap J, D’Antonio C, Firestone MK (2006) Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant Soil 281(1–2):369–380. doi:10.1007/s11104-005-4826-3 CrossRefGoogle Scholar
  24. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93(1):5–15. doi:10.1111/j.1365-2745.2004.00953.x CrossRefGoogle Scholar
  25. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in californian serpentine grassland. Ecology 71(2):478–491CrossRefGoogle Scholar
  26. Inderjit, van der Putten WH (2010) Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol 25(9):512–519. doi:10.1016/j.tree.2010.06.006 PubMedCrossRefGoogle Scholar
  27. Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant–soil feedback controls succession. Ecol Lett 9(9):1080–1088. doi:10.1111/j.1461-0248.2006.00953.x PubMedCrossRefGoogle Scholar
  28. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70. doi:10.1038/417067a PubMedCrossRefGoogle Scholar
  29. Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35(7):895–905. doi:10.1016/s0038-0717(03)00120-2 CrossRefGoogle Scholar
  30. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11(9):980–992. doi:10.1111/j.1461-0248.2008.01209.x PubMedCrossRefGoogle Scholar
  31. Kurokawa H, Peltzer DA, Wardle DA (2010) Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Funct Ecol 24(3):513–523. doi:10.1111/j.1365-2435.2009.01676.x CrossRefGoogle Scholar
  32. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177(3):706–714. doi:10.1111/j.1469-8137.2007.02290.x PubMedCrossRefGoogle Scholar
  33. Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010) Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466(7307):752-U710. doi:10.1038/nature09273 CrossRefGoogle Scholar
  34. Mangla S, Inderjit, Callaway RM (2008) Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J Ecol 96(1):58–67. doi:10.1111/j.1365-2745.2007.01312.x Google Scholar
  35. Maron JL, Klironomos J, Waller L, Callaway RM (2014) Invasive plants escape from suppressive soil biota at regional scales. J Ecol 102(1):19–27. doi:10.1111/1365-2745.12172 CrossRefGoogle Scholar
  36. McCarthy-Neumann S, Ibáñez I (2013) Plant–soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. Ecology 94(4):780–786. doi:10.1890/12-1338.1 CrossRefGoogle Scholar
  37. McCarthy-Neumann S, Kobe RK (2010) Conspecific plant–soil feedbacks reduce survivorship and growth of tropical tree seedlings. J Ecol 98(2):396–407. doi:10.1111/j.1365-2745.2009.01619.x CrossRefGoogle Scholar
  38. Meisner A, de Boer W, Cornelissen JHC, van der Putten WH (2012) Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients. PLoS One 7(2):e31596. doi:10.1371/journal.pone.0031596 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Morriën E, van der Putten WH (2013) Soil microbial community structure of range-expanding plant species differs from co-occurring natives. J Ecol 101(5):1093–1102. doi:10.1111/1365-2745.12117 CrossRefGoogle Scholar
  40. Reinhart KO (2012) The organization of plant communities: negative plant–soil feedbacks and semiarid grasslands. Ecology 93(11):2377–2385. doi:10.1890/12-0486.1 PubMedCrossRefGoogle Scholar
  41. Reinhart KO, Callaway RM (2004) Soil biota facilitate exotic Acer invasions in Europe and North America. Ecol Appl 14(6):1737–1745. doi:10.1890/03-5204 CrossRefGoogle Scholar
  42. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170(3):445–457. doi:10.1111/j.1469-8137.2006.01715.x PubMedCrossRefGoogle Scholar
  43. Reinhart KO, Tytgat T, Van der Putten WH, Clay K (2010) Virulence of soil-borne pathogens and invasion by Prunus serotina. New Phytol 186(2):484–495. doi:10.1111/j.1469-8137.2009.03159.x PubMedCrossRefGoogle Scholar
  44. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75(1):65–93PubMedCrossRefGoogle Scholar
  45. Rosenberg MS, Adams DC, Gurevitch J (1999) Manual MetaWin: statistical software for meta-analysis. Version 2.0. Sunderland, MAGoogle Scholar
  46. Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90(4):1055–1062. doi:10.1890/08-0419.1 PubMedCrossRefGoogle Scholar
  47. Simberloff D, Gibbons L (2004) Now you see them, now you don’t—population crashes of established introduced species. Biol Invasions 6(2):161–172. doi:10.1023/b:binv.0000022133.49752.46 CrossRefGoogle Scholar
  48. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4(5):727–731. doi:10.1371/journal.pbio.0040140 CrossRefGoogle Scholar
  49. Suding KN, Stanley Harpole W, Fukami T, Kulmatiski A, MacDougall AS, Stein C, van der Putten WH (2013) Consequences of plant–soil feedbacks in invasion. J Ecol 101(2):298–308. doi:10.1111/1365-2745.12057 CrossRefGoogle Scholar
  50. Tecco PA, Diaz S, Cabido M, Urcelay C (2010) Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J Ecol 98(1):17–27. doi:10.1111/j.1365-2745.2009.01592.x CrossRefGoogle Scholar
  51. Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x PubMedCrossRefGoogle Scholar
  52. Van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37. doi:10.1038/ismej.2007.9 PubMedCrossRefGoogle Scholar
  53. Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13(2):235–245. doi:10.1111/j.1461-0248.2009.01418.x PubMedCrossRefGoogle Scholar
  54. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–708. doi:10.1111/j.1461-0248.2011.01628.x PubMedCrossRefGoogle Scholar
  55. Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90(2):399–407. doi:10.1890/07-2144.1 PubMedCrossRefGoogle Scholar
  56. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633. doi:10.1126/science.1094875 PubMedCrossRefGoogle Scholar
  57. Weiss SB (1999) Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conserv Biol 13(6):1476–1486. doi:10.1046/j.1523-1739.1999.98468.x CrossRefGoogle Scholar
  58. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77(6):1661–1666. doi:10.2307/2265769 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Annelein Meisner
    • 1
    • 2
  • W. H. Gera Hol
    • 1
  • Wietse de Boer
    • 3
    • 4
  • Jennifer Adams Krumins
    • 5
  • David A. Wardle
    • 6
  • Wim H. van der Putten
    • 1
    • 7
  1. 1.Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  2. 2.Department of Biology, Microbial EcologyLund UniversityLundSweden
  3. 3.Department of Soil QualityWageningen UniversityWageningenThe Netherlands
  4. 4.Department of Microbial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  5. 5.Department of Biology and Molecular BiologyMontclair State UniversityMontclairUSA
  6. 6.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
  7. 7.Laboratory of NematologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations