Biological Invasions

, Volume 16, Issue 3, pp 591–607 | Cite as

Can model species be used to advance the field of invasion ecology?

  • Michael J. Gundale
  • Aníbal Pauchard
  • Bárbara Langdon
  • Duane A. Peltzer
  • Bruce D. Maxwell
  • Martin A. Nuñez
Original Paper


Hypotheses for explaining plant invasions have focused on a variety of factors that may influence invasion success, including propagule pressure, interactions of the introduced species with the biotic, abiotic, or disturbance properties of the new ecosystem, or the genetic characteristics of the invader itself. Evaluating the relative importance of these factors has been difficult because for most invaders key information about the introduced population or the introduction event is not available. We propose that natural experiments using model species is an important tool to test multiple invasion hypotheses at the same time, providing a complementary approach to meta-analysis and literature review. By focusing on a single candidate species, Pinus contorta, we explore several attributes that we propose constitute a good model, including: (a) intentional and relatively well documented introduction into a wide range of environments and countries across the world during the past century, where invasion success or failure has already occurred, (b) conspicuous growth form that simplifies assessment of growth rates, and comparisons across native and introduced ecosystems around the world, and, (c) documented and replicated variability of introduction intensity, genetic characteristics of the introduced populations, contrasting biotic communities present at sites of introduction, and abiotic conditions within and across introduced ecosystems. We propose that identifying model species with these characteristics will provide opportunities to disentangle the relative importance of different mechanisms hypothesized to influence invasion success, and thereby advance the field of invasion ecology.


Biological invasions Global experiments Invasion hypotheses Model species Native versus home comparison Pinus contorta Tree invasions 



MJG was supported by Swedish TC4F program and the Swedish research council FORMAS. DAP was supported by Core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group. AP is funded by Fondecyt 1100792, Conicyt PFB-23 and ICM P05-002. BM was funded by NSF-WildFIRE PIRE, OISE 09667472. The ideas in this manuscript were developed during the Tree Invasions Workshop held in Bariloche, Argentina, September 3–5, 2012. We thank Ian Dickie for comments on an earlier version of the manuscript.


  1. Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354PubMedCrossRefGoogle Scholar
  2. Bernhold A, Hansson P, Rioux D, Simard M, Laflamme G (2009) Resistance to Gremmeniella abietina (European race, large tree type) in introduced Pinus contorta and native Pinus sylvestris in Sweden. Can J For Res 39:89–96. doi: 10.1139/x08-157 CrossRefGoogle Scholar
  3. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi: 10.1016/j.tree.2011.03.023 PubMedCrossRefGoogle Scholar
  4. Blossey B, Notzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants—a hypothesis. J Ecol 83:887–889. doi: 10.2307/2261425 CrossRefGoogle Scholar
  5. Brodribb TJ, Feild TS (2008) Evolutionary significance of a flat-leaved Pinus in Vietnamese rainforest. New Phytol 178:201–209. doi: 10.1111/j.1469-8137.2007.02338.x PubMedCrossRefGoogle Scholar
  6. Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709. doi: 10.1111/j.1461-0248.2007.01060.x PubMedCrossRefGoogle Scholar
  7. Byrd KB, Parker VT, Vogler DR, Cullings KW (2000) The influence of clear-cutting on ectomycorrhizal fungus diversity in a lodgepole pine (Pinus contorta) stand, Yellowstone National Park, Wyoming, and Gallatin National Forest, Montana. Can J Bot 78:149–156Google Scholar
  8. Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290(5491):521–523. doi: 10.1126/science.290.5491.521 PubMedCrossRefGoogle Scholar
  9. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417(6891):844–848PubMedCrossRefGoogle Scholar
  10. Callaway RM et al (2011) Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92.5:1027–1035Google Scholar
  11. Caplat P, Nathan R, Buckley YM (2012) Seed terminal velocity, wind turbulence, and demography drive the spread of an invasive tree in an analytical model. Ecology 93:368–377PubMedGoogle Scholar
  12. Chun YJ, van Kleunen M, Dawson W (2010) The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance. Ecol Lett 13:937–946. doi: 10.1111/j.1461-0248.2010.01498.x PubMedGoogle Scholar
  13. Colautti RI et al (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7.8:721–733Google Scholar
  14. Cullings KW, Vogler DR, Parker VT, Finley SK (2000) Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl Environ Micro 66:4988–4991CrossRefGoogle Scholar
  15. Davis MR, Lang MH (1991) Increased nutrient availability in topsoils under conifers in the south Island high country. N Z J For Sci 21:165–179Google Scholar
  16. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  17. Despain DG (2001) Dispersal ecology of lodgepole pine (Pinus contorta Dougl.) in its native environment as related to Swedish forestry. For Ecol Manag 141:59–68CrossRefGoogle Scholar
  18. Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484. doi: 10.1111/j.1469-8137.2010.03277.x PubMedCrossRefGoogle Scholar
  19. Díez JM (2005) Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biol Invas 7:3–15CrossRefGoogle Scholar
  20. Diez JM, Dickie IA, Edwards G, Hulme PE, Sullivan JJ, Duncan RP (2010) Negative soil feedbacks accumulate over time for non-native plant species. Ecol Lett 13:803–809PubMedCrossRefGoogle Scholar
  21. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x PubMedCrossRefGoogle Scholar
  22. Edburg SL, Hicke JA, Brooks PD, Pendall EG, Ewers BE, Norton U, Gochis D, Gutmann ED, Meddens AJH (2012) Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front Ecol Environ 10:416–424. doi: 10.1890/110173 CrossRefGoogle Scholar
  23. Elfving B, Ericsson T, Rosvall O (2001) The introduction of lodgepole pine for wood production in Sweden - a review. For Ecol Manage 141:15–29CrossRefGoogle Scholar
  24. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050. doi: 10.1073/pnas.97.13.7043 PubMedCrossRefGoogle Scholar
  25. Elton CS (ed) (1958) The ecology of invasions by animals and plants. Chapman and Hall, LondonGoogle Scholar
  26. Fries A, Ruotsalainen S, Lindgren D (1998) Effects of temperature on the site productivity of Pinus sylvestris and lodgepole pine in Finland and Sweden. Scand J For Res 13:128–140. doi: 10.1080/02827589809382969 CrossRefGoogle Scholar
  27. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature, UK, 242(5396):344–347Google Scholar
  28. Grotkopp E, Rejmánek M, Thomas LR (2002) Toward a casual explanation of plant Invasiveness: seedling Growth and Life- History Strategies of 29 pine (Pinus) Species. Am Nat 159:396–419PubMedCrossRefGoogle Scholar
  29. Gundale MJ, Deluca TH, Nordin A (2011a) Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Glob Change Biol 17:2743–2753. doi: 10.1111/j.1365-2486.2011.02407.x CrossRefGoogle Scholar
  30. Gundale MJ, Fajardo A, Lucas RW, Nilsson M-C, Wardle DA (2011b) Resource heterogeneity does not explain the productivity-diversity relationship across a boreal island fertility gradient. Ecography 34:887–896CrossRefGoogle Scholar
  31. Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149CrossRefGoogle Scholar
  32. Gurevitch J, Fox GA, Wardle GM, Inderjit, Taub D (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418. doi: 10.1111/j.1461-0248.2011.01594.x PubMedCrossRefGoogle Scholar
  33. Haysom KA, Murphy ST (2003) The status of invasiveness of forest tree species outside their natural habitat: a global review and discussion paper. Forest Health and Biosecurity Working Papers FAO, Forestry DepartmentGoogle Scholar
  34. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi: 10.1111/j.1365-2745.2004.00953.x CrossRefGoogle Scholar
  35. Hierro JL, Villarreal D, Eren O, Graham JM, Callaway RM (2006) Disturbance facilitates invasion: the effects are stronger abroad than at home. Am Nat 168:144–156. doi: 10.1086/505767 PubMedCrossRefGoogle Scholar
  36. Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecol 135:79–93. doi: 10.1023/a:1009760512895 CrossRefGoogle Scholar
  37. Hinz HL, Schwarzländer M, McKenney JL, Cripps MG, Harmon B, Price WJ (2012) Biogeographical comparison of the invasive Lepidium draba in its native, expanded and introduced ranges. Biol Invasions 14(10):1999–2016Google Scholar
  38. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion - implications for conservation. Conserv Biol 6:324–337. doi: 10.1046/j.1523-1739.1992.06030324.x CrossRefGoogle Scholar
  39. Jeschke JM, Aparicio LG, Haider S, Heger T, Lortie CJ, Pyšek P, Strayer DL (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1–20CrossRefGoogle Scholar
  40. Josefsson T, Gunnarson B, Liedgren LG, Bergman I, Östlund L (2010) Historical human influence on forest composition and structure in boreal Fennoscandia. Can J For Res-Rev Can Rech For 40:872–884CrossRefGoogle Scholar
  41. Kardell L, Blomgren M, Nitare J (1987) Mushroom production and species composition in stand of Pinus contorta and Pinus sylvestris. Svensk Botanisk Tidskrift 1:133Google Scholar
  42. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17.4:164–170Google Scholar
  43. Kennedy TA et al (2002) Biodiversity as a barrier to ecological invasion. Nature 417.6889:636–638Google Scholar
  44. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70PubMedCrossRefGoogle Scholar
  45. Krebill RG (1973) Lodgepole Pine’s fungus-caused diseases and decays. Manag Lodg Pine Ecosyst 377–405Google Scholar
  46. Kueffer C, Pyšek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis, and invasion syndromes. New Phytol 200:615–633PubMedCrossRefGoogle Scholar
  47. Lähde E, Werren M, Etholén K, Silander V (1984) Ulkomaisten havupuulajien varttuneista viljelmistä Suomessa. Summary: older forest trials of exotic conifer species in Finland. Commun Inst For Fenn 125:1–87Google Scholar
  48. Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biological Invas 12:3961–3971. doi: 10.1007/s10530-010-9817-5 CrossRefGoogle Scholar
  49. Ledgard N (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand. For Ecol Manag 141:43–57CrossRefGoogle Scholar
  50. Ledgard NJ, Baker GC (1988) Mountainland forestry: 30 years’ research in the Craigieburn Range, New Zealand. Ministry of Forestry, Forest Research InstititueGoogle Scholar
  51. Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854. doi: 10.1126/science.288.5467.852 PubMedCrossRefGoogle Scholar
  52. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26. doi: 10.2307/3546992 CrossRefGoogle Scholar
  53. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi: 10.1111/j.1461-0248.2004.00657.x CrossRefGoogle Scholar
  54. Lindelow A, Bjorkman C (2001) Insects on lodgepole pine in Sweden - current knowledge and potential risks. For Ecol Manag 141:107–116. doi: 10.1016/s0378-1127(00)00494-1 CrossRefGoogle Scholar
  55. Lindsey GD (1973) The influence of animals on Lodgepole Pine regeneration. Manag Lodg Pine Ecosyst 457–470Google Scholar
  56. Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8.7:1535–1545Google Scholar
  57. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 PubMedCrossRefGoogle Scholar
  58. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536. doi:10.1890/0012-9658(1999)080[1522:gpopia];2Google Scholar
  59. Lotan JE, Critchfield WB (1990) Pinus contorta Dougl. ex. Loud. Lodgepole Pine. In: Burns RM, Honkala BH (eds) Silvics of North America, vol. 1, Conifers. USDA Forest Service and Agriculture Handbook, no. 654, pp 302–315Google Scholar
  60. MacArthur R (1970) Species packing and competitive equilibrium for many species. Theor Popul Biol 1.1:1–11Google Scholar
  61. MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97.4:609–615Google Scholar
  62. Mark AF, Dickinson KJM (2008) Maximising water yield with indigenous non-forest vegetation: a New Zealand perspective. Front Ecol Environ 6:25–34CrossRefGoogle Scholar
  63. Maron JL, Vila M, Arnason J (2004) Loss of enemy resistance among introduced populations of St. John’s Wort (Hypericum perforatum). Ecology 85:3243–3253. doi: 10.1890/04-0297 CrossRefGoogle Scholar
  64. Marx DH (1991) The practical significance of ectomycorrhizae in forest establishment. In: Ecophysiology of Ectomycorrhizae of Forest Trees. Marcus Wallenberg Foundation Symposia Proceedings, 7 Falun, Sweden: Marcus Wallenberg Foundation, 54–90Google Scholar
  65. Mayr E (1970) Populations, species, and evolution. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  66. McGregor KF, Watt MS, Hulme PE, Duncan RP (2012) What determines pine naturalization: species traits, climate suitability or forestry use? Divers Distrib 18:1013–1023. doi: 10.1111/j.1472-4642.2012.00942.x CrossRefGoogle Scholar
  67. McIntosh ACS, Macdonald SE, Gundale MJ (2012) Tree species versus regional controls on ecosystem properties and processes: an example using introduced Pinus contorta in Swedish boreal forests. Can J For Res 42:1228–1238. doi: 10.1139/x2012-049 CrossRefGoogle Scholar
  68. Miller JT, Ecroyd CE (1987) Introduced forest trees in New Zealand: recognition, role and seed source. Pinus contorta Loudon—contorta pine. Forest Research Institute Bulletin no 124 Rotorua, New Zealand, 12Google Scholar
  69. Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421.6923:625–627Google Scholar
  70. Moles AT, Gruber MAM, Bonser SP (2008) A new framework for predicting invasive plant species. J Ecol 96:13–17. doi: 10.1111/j.1365-2745.2007.01332.x Google Scholar
  71. Moles AT, Flores-Moreno H, Bonser SP, Warton DI, Helm A, Warman L, Eldridge DJ, Jurado E, Hemmings FA, Reich PB, Cavender-Bares J, Seabloom EW, Mayfield MM, Sheil D, Djietror JC, Peri PL, Enrico L, Cabido MR, Setterfield SA, Lehmann CER, Thomson FJ (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116–127. doi: 10.1111/j.1365-2745.2011.01915.x CrossRefGoogle Scholar
  72. National Biodiversity Data Centre (2010) Pinus contorta. National Invasive Species Database.
  73. Nilsson C, Engelmark O, Cory J, Forsslund A, Carlborg E (2008) Differences in litter cover and understorey flora between stands of introduced lodgepole pine and native scots pine in Sweden. For Ecol Manag 255:1900–1905. doi: 10.1016/j.foreco.2007.12.012 CrossRefGoogle Scholar
  74. Nunez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359PubMedCrossRefGoogle Scholar
  75. Parchman TL, Benkman CW, Jenkins B, Buerkle CA (2011) Low levels of population genetic structure in Pinus contorta (Pinaceae) across a geographic mosaic of co-evolution. Am J Bot 98:669–679PubMedCrossRefGoogle Scholar
  76. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invas 1:3–19. doi: 10.1023/a:1010034312781 CrossRefGoogle Scholar
  77. Pena E, Hidalgo M, Langdon B, Pauchard A (2008) Patterns of spread of Pinus contorta Dougl. ex Loud. invasion in a Natural Reserve in southern South America. For Ecol Manag 256:1049–1054. doi: 10.1016/j.foreco.2008.06.020 CrossRefGoogle Scholar
  78. Phil-Karlsson G, Akselsson C, Hellsten S, Karlsson PE, Malm G (2009) Övervakning av luftföroreningar i norra Sverige—mätningar och modellering., vol IVL rapport B 1851. IVL. Svenska MiljöinstitutetGoogle Scholar
  79. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715. doi: 10.1146/annurev.ecolsys.39.110707.173454 CrossRefGoogle Scholar
  80. Pyšek P, Jarošik V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18:1725–1737. doi: 10.1111/j.1365-2486.2011.02636.x PubMedCentralCrossRefGoogle Scholar
  81. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457. doi: 10.1111/j.1469-8137.2006.01715.x PubMedCrossRefGoogle Scholar
  82. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive. Ecology 77:1655–1661CrossRefGoogle Scholar
  83. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094CrossRefGoogle Scholar
  84. Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E (2005) Ecology of invasive plants: state of the art. In: Mooney HA, Mack RN, McNeely JA, Neville L, Schei PJ, Waage J (eds) Invasive alien species: a new synthesis. Island Press, Washington, DC, pp 104–161Google Scholar
  85. Richardson DM (2006) Pinus: a model group for unlocking the secrets of alien plant invasions? Preslia 78:375–388Google Scholar
  86. Richardson DM, Higgins SI (1998) Pines as invaders in the southern hemisphere. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 450–473Google Scholar
  87. Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331CrossRefGoogle Scholar
  88. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809. doi: 10.1111/j.1472-4642.2011.00782.x CrossRefGoogle Scholar
  89. Richardson DM, Williams RA, Hobbs RJ (1994) Pine invasion in the southern Hemisphere: determinants of spread and Invadability. J Biogeogr 21:511–527CrossRefGoogle Scholar
  90. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000a) Plant invasions—the role of mutualisms. Biol Rev 75:65–93PubMedCrossRefGoogle Scholar
  91. Richardson DM, Pysek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000b) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  92. Richardson DM, Rouget M, Rejmánek M (2004) Using natural experiments in the study of alien tree invasions: Opportunities and limitations. In: Gordon MS, Bartol SM (eds) Experimental approaches to conservation biology. University of California Press, Berkeley, pp 180–181CrossRefGoogle Scholar
  93. Richardson DM, Carruthers J, Hui C, Impson F, Miller J, Robertson MP, Rouget M, Le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias—a global experiment in biogeography. Divers Distrib 17:771–787. doi: 10.1111/j.1472-4642.2011.00824.x CrossRefGoogle Scholar
  94. Sanders NJ, Weltzin JF, Crutsinger GM, Fitzpatrick MC, Nunez MA, Oswalt CM, Lane KE (2007) Insects mediate the effects of propagule supply and resource availability on a plant invasion. Ecology 88:2383–2391. doi: 10.1890/06-1449.1 PubMedCrossRefGoogle Scholar
  95. Sarasola M, Rusch V, Schlichter T, Ghersa C (2006) Invasión de coníferas forestales en áreas de estepa y bosques de ciprés de la cordillera en la región Andino Patagónica. Austral Ecol 16:143–156Google Scholar
  96. Sax DF (2001) Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. J Biogeogr 28:139–150. doi: 10.1046/j.1365-2699.2001.00536.x CrossRefGoogle Scholar
  97. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515PubMedCrossRefGoogle Scholar
  98. Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol Syst 40:81–102. doi: 10.1146/annurev.ecolsys.110308.120304 CrossRefGoogle Scholar
  99. Simberloff D, Relva MA, Nunez M (2002) Gringos en el bosque: introduced tree invasion in a native Nothofagus/Austrocedrus forest. Biol Invasions 4:35–53CrossRefGoogle Scholar
  100. Simberloff D, Nunez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, Van Wilgen BW, Zalba SM, Zenni RD, Bustamante R, Pena E, Ziller SR (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504. doi: 10.1111/j.1442-9993.2009.02058.x CrossRefGoogle Scholar
  101. Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78(1):23–55Google Scholar
  102. Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46. doi:10.1890/0012-9615(1999)069[0025:epsihs];2Google Scholar
  103. Stohlgren TJ, Barnett DT, Kartesz J (2003) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1:11–14. doi:10.1890/1540-9295(2003)001[0011:trgrpo];2Google Scholar
  104. Stohlgren TJ, Pysek P, Kartesz J, Nishino M, Pauchard A, Winter M, Pino J, Richardson DM, Wilson JRU, Murray BR, Phillips ML, Ming-yang L, Celesti-Grapow L, Font X (2011) Widespread plant species: natives versus aliens in our changing world. Biol Invas 13:1931–1944. doi: 10.1007/s10530-011-0024-9 CrossRefGoogle Scholar
  105. Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proc Natl Acad Sci USA 103:5841–5845. doi: 10.1073/pnas.0508073103 PubMedCrossRefGoogle Scholar
  106. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689PubMedCrossRefGoogle Scholar
  107. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273. doi: 10.1111/j.1469-8137.2007.02207.x PubMedCrossRefGoogle Scholar
  108. Urrutia J (2012) Impactos de la invasión de Pinus contorta Douglas and Loudon sobre la diversidad vegetal en la Reserva Nacional Malalcahuello, Región de La Araucanía, Chile. MSc Thesis, University of Concepcion, ChileGoogle Scholar
  109. Van Kleunen M, Weber E, Fischer M (2010) A meta analysis of trait differences between invasive and non invasive plant species. Ecol Lett 13.2:235–245Google Scholar
  110. Vila M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi: 10.1111/j.1461-0248.2011.01628.x PubMedCrossRefGoogle Scholar
  111. Visser V, Langdon B, Pauchard A, Richardson DM (2014) Unlocking the potential of Google Earth as a tool in invasion science. Biol Invasions 16. doi: 10.1007/s10530-013-0604-y
  112. Walker S, Wilson JB, Lee WG (2004) Pre-settlement woody vegetation of Central Otago. N Z J Bot 42:613–646CrossRefGoogle Scholar
  113. Wardle P (1985) New Zealand timberlines. 3. A synthesis. N Z J Bot 23:263–271CrossRefGoogle Scholar
  114. Williamson M (1996) Biological invasions. Chapman and Hall, LondonGoogle Scholar
  115. Wilmshurst JM, Anderson AJ, Higham FG, Worthy TH (2008) Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proc Natl Acad Sci USA 105:7676–7680PubMedCrossRefGoogle Scholar
  116. Zenni RD, Nuñez MA (2013) The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos. doi: 10.1111/j.1600-0706.2012.00254.x
  117. Zenni R, Simberloff D (2013) Number of source populations as a potential driver of pine invasions in Brazil. Biological Invas 15:1623–1639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Michael J. Gundale
    • 1
  • Aníbal Pauchard
    • 2
  • Bárbara Langdon
    • 3
  • Duane A. Peltzer
    • 4
  • Bruce D. Maxwell
    • 5
  • Martin A. Nuñez
    • 6
  1. 1.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
  2. 2.Facultad de Ciencias Forestales, Concepcion and Institute of Ecology and Biodiversity (IEB)Universidad de ConcepcionSantiagoChile
  3. 3.División Manejo EcosistémicoPrograma Conservación de FloraCoronelChile
  4. 4.Landcare ResearchCanterburyNew Zealand
  5. 5.Department of Land Resources and Environmental ScienceMontana State UniversityBozemanUSA
  6. 6.Lab EcotonoINIBIOMA (Conicet-Universidad Nacional del Comahue)BarilocheArgentina

Personalised recommendations