Biological Invasions

, Volume 16, Issue 3, pp 705–719 | Cite as

Conflicting values: ecosystem services and invasive tree management

  • Ian A. DickieEmail author
  • Brett M. Bennett
  • Larry E. Burrows
  • Martin A. Nuñez
  • Duane A. Peltzer
  • Annabel Porté
  • David M. Richardson
  • Marcel Rejmánek
  • Philip W. Rundel
  • Brian W. van Wilgen
Original Paper


Tree species have been planted widely beyond their native ranges to provide or enhance ecosystem services such as timber and fibre production, erosion control, and aesthetic or amenity benefits. At the same time, non-native tree species can have strongly negative impacts on ecosystem services when they naturalize and subsequently become invasive and disrupt or transform communities and ecosystems. The dichotomy between positive and negative effects on ecosystem services has led to significant conflicts over the removal of non-native invasive tree species worldwide. These conflicts are often viewed in only a local context but we suggest that a global synthesis sheds important light on the dimensions of the phenomenon. We collated examples of conflict surrounding the control or management of tree invasions where conflict has caused delay, increased cost, or cessation of projects aimed at invasive tree removal. We found that conflicts span a diverse range of taxa, systems and countries, and that most conflicts emerge around three areas: urban and near-urban trees; trees that provide direct economic benefits; and invasive trees that are used by native species for habitat or food. We suggest that such conflict should be seen as a normal occurrence in invasive tree removal. Assessing both positive and negative effects of invasive species on multiple ecosystem services may provide a useful framework for the resolution of conflicts.


Biological invasions Carbon sequestration Conflict resolution Multidimensional evaluation Non-native tree invasion Tree invasions urban forests Wildlife ecology 



This review came out of discussions at a workshop in Isla Victoria, Bariloche, Argentina, in September 2012. We thank Hitoshi Sakio, Tadashi Fukami, Bob Frame and Simon Fowler for additional discussions and helpful input. IAD, LEB, and DAP were supported by Core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group. DMR and BWvW acknowledge support from the DST-NRF Centre of Excellence for Invasion Biology (CIB) and the Working for Water (WfW) programme, partly through the CIB/WfW collaborative project on “Research for integrated management of invasive alien species”. DMR acknowledges funding from the National Research Foundation (Grant 85417). The Oppenheimer Memorial Trust cofunded the attendance of several participants at the Bariloche workshop.


  1. Adair RJ, Keel SI (2010) Biological control of invasive willows in Australia: developing a strategy. In: Proceedings of 2nd National Willows Research Forum, 22–23 July, 2010, Beechworth, Victoria, Australia, pp 17–18.
  2. Alario M, Brün M (2001) Uncertainty and controversy in the science and ethics of environmental policy making. Theory Sci 2 (1). ISSN 1527–5558.
  3. Allen DG, Harrison JA, van Wilgen BW, Thompson MW (1997) The impact of commercial afforestation on bird populations in Mpumalanga province, South Africa—insights from bird atlas data. Biol Conserv 79:173–185. doi: 10.1016/S0006-3207(96)00098-5 CrossRefGoogle Scholar
  4. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198. doi: 10.1016/j.biocon.2006.03.023 CrossRefGoogle Scholar
  5. Aristotle (350 BCE) The Athenian constitution. Trans Kenyon FG. Accessed 15 Nov 2012
  6. Aslan CE, Rejmánek M, Klinger R (2012) Combining efficient methods to detect spread of woody invaders in urban-rural matrix landscapes: an exploration using two species of Oleaceae. J Appl Ecol 49:331–338CrossRefGoogle Scholar
  7. Auld BA, Nagatalevu-Seniloi M (2003) African tulip tree in the Fijian Islands. In: Labrada R (ed) Addendum 1, Weed management for developing countries. FAO, Rome.
  8. Başnou C (2006) Robinia pseudoacacia. In DAISIE: Delivering European Alien Invasive Species Inventories for Europe. Online database. Accessed 15 Nov 2012
  9. Becera PI, Montenegro G (2013) The widely invasive tree Pinus radiata facilitates regeneration of native woody species in a semi-arid ecosystem. Appl Veg Sci 16:173–183. doi: 10.1111/j.1654-109X.2012.01221.x CrossRefGoogle Scholar
  10. Bennett BM (2011) A global history of Australian trees. J Hist Biol 44:125–145. doi: 10.1007/s10739-010-9243-7 PubMedCrossRefGoogle Scholar
  11. Burrows L, Mark A, Timms A (2012) What is the right tree and where is the right place for exotic conifers on high country lands? Ecol Soc NZ Newsl 141:5–8.
  12. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 PubMedCrossRefGoogle Scholar
  13. Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci USA 106:1305–1312. doi: 10.1073/pnas.0808772106 PubMedCrossRefGoogle Scholar
  14. CBSNews (2010) Tamarisk eradication halted to protect endangered bird. Accessed 15 Nov 2012
  15. Chiba S (2010) Invasive non-native species’ provision of refugia for endangered native species. Conserv Biol 24:1141–1147. doi: 10.1111/j.1523-1739.2010.01457.x PubMedCrossRefGoogle Scholar
  16. Coates PA (2006) American perceptions of immigrant and invasive species. Strangers on the Land. University of California Press, BerkeleyGoogle Scholar
  17. Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Brown JH, Rosenzweig ML, Gardener MR, Carroll SP (2011) Don’t judge species on their origins. Nature 474:153–154. doi: 10.1038/474153a PubMedCrossRefGoogle Scholar
  18. de Wit MP, Crookes DJ, van Wilgen BW (2001) Conflicts of interest in environmental management: estimating the costs and benefits of a tree invasion. Biol Invasions 3:167–178CrossRefGoogle Scholar
  19. Dickie IA, Yeates GW, St J, Mark G, Stevenson BA, Scott JT, Rillig MC, Peltzer DA, Orwin KH, Kirschbaum MUF, Hunt JE, Burrows LE, Barbour MM, Aislabie J (2011) Ecosystem service and biodiversity trade-offs in two woody successions. J Appl Ecol 48:926–934. doi: 10.1111/j.1365-2664.2011.01980.x CrossRefGoogle Scholar
  20. Dudley TL, DeLoach CJ (2004) Saltcedar (Tamarix spp.), Endangered species, and biological weed control—can they mix? 1. Weed Technol 18:1542–1551. doi:10.1614/0890-037X(2004)018[1542:STSESA]2.0.CO;2Google Scholar
  21. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. doi: 10.1007/s10021-002-0151-3 CrossRefGoogle Scholar
  22. Ewel JJ, Putz FE (2004) A place for alien species in ecosystem restoration. Front Ecol Environ 2:354–360CrossRefGoogle Scholar
  23. Finn H, Stock W, Valentine L (2009) Pines and the ecology of Carnaby’s black-cockatoos (Calyptorhynchus latirostris) in the Gnangara Sustainability Strategy study area. Report for the Forest Products Commission. Centre for Ecosystem Management Report No. 10-2009, Edith Cowan University, Perth, Australia.
  24. Fischer LK, von der Lippe M, Kowarik I (2009) Tree invasion in managed tropical forests facilitates endemic species. J Biogeogr 36:2251–2263. doi: 10.1111/j.1365-2699.2009.02173.x CrossRefGoogle Scholar
  25. Fox R (2012) Landcorp forest ‘insult’. Otago Daily Times 2 July 2012. Accessed 26 Nov 2012
  26. Frame B, O’Connor M (2011) Integrating valuation and deliberation: the purposes of sustainability assessment. Environ Sci Policy 14:1–10. doi: 10.1016/j.envsci.2010.10.009 CrossRefGoogle Scholar
  27. Fukami T, Morin PJ (2003) Productivity–biodiversity relationships depend on the history of community assembly. Nature 424:423–426. doi: 10.1038/nature01785 PubMedCrossRefGoogle Scholar
  28. Griffiths JW (2001) Web site characteristics, dispersal and species status of New Zealand’s katipo spiders, Latrodectus katipo and L. atritus. PhD thesis, Lincoln UniversityGoogle Scholar
  29. Hoffmann JH, Moran VC, Van Wilgen BW (2011) Prospects for the biological control of invasive Pinus species (Pinaceae) in South Africa. Afr Entomol 19:393–401. doi: 10.4001/003.019.0209 CrossRefGoogle Scholar
  30. Impson FAC, Hoffmann JH, Kleinjan C, Muniappan R, Reddy GVP, Raman A (2009) Biological control of Australian Acacia species. In: Muniappan R, Reddy GVP, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, pp 38–62CrossRefGoogle Scholar
  31. Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626. doi: 10.1038/nature00910 PubMedCrossRefGoogle Scholar
  32. Kahan DM, Peters E, Wittlin M, Slovic P, Ouellette LL, Braman D, Mandel G (2012) The polarizing impact of science literacy and numeracy on perceived climate change risks. Nat Clim Chang 2:732–735. doi: 10.1038/nclimate1547 CrossRefGoogle Scholar
  33. Kasrils R (2001) Jacaranda—Xenophobia in the name of environment management? Accessed 26 Nov 2012
  34. Kirkpatrick JB, Davison A, Daniels GD (2012) Resident attitudes towards trees influence the planting and removal of different types of trees in eastern Australian cities. Land Urb Plan 107:147–158. doi: 10.1016/j.landurbplan.2012.05.015 CrossRefGoogle Scholar
  35. Körner C, Stocklin J, Reuther-Thiebaud L, Pelaez-Riedl S (2008) Small differences in arrival time influence composition and productivity of plant communities. New Phytol 177:698–705. doi: 10.1111/j.1469-8137.2007.02287.x PubMedCrossRefGoogle Scholar
  36. Kull CA, Tassin J (2012) Australian acacias: useful and (sometimes) weedy. Biol Invasions 14:2229–2233. doi: 10.1007/s10530-012-0244-7 CrossRefGoogle Scholar
  37. Kull CA, Shackleton CM, Cunningham PJ, Ducatillon C, Dufour-Dror JM, Esler KJ, Friday JB, Gouveia AC, Griffin AR, Marchante E (2011) Adoption, use and perception of Australian acacias around the world. Divers Distrib 17:822–836. doi: 10.1111/j.1472-4642.2011.00783.x CrossRefGoogle Scholar
  38. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Biol Sci B 270:775–781. doi: 10.1098/rspb 2003.2327CrossRefGoogle Scholar
  39. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. doi: 10.1111/j.1469-8137.2007.02290.x PubMedCrossRefGoogle Scholar
  40. Low T (2012a) Australian acacias: weeds or useful trees? Biol Invasions 14:2217–2227. doi: 10.1007/s10530-012-0243-8 CrossRefGoogle Scholar
  41. Low T (2012b) In denial about dangerous aid. Biol Invasions 14:2235–2236. doi: 10.1007/s10530-012-0264-3 CrossRefGoogle Scholar
  42. Macleay R (2011) Heritage weeds in Latteland: an essay on camphor laurels, coffee, democracy, streetscape, tourism and Bellingen. North Bank Institute of Independent Studies, Bellingen, NSW 2434, Australia, Accessed 26 Nov 2012
  43. Mandu P, Kibet S, Morimoto Y, Imbumi M, Adeka R (2009) Impact of Prosopis juliflora on Kenya’s semi-arid and arid ecosystems and local livelihoods. Biodiversity 2(3):33–50CrossRefGoogle Scholar
  44. Mascaro J, Hughes RF, Schnitzer SA (2012) Novel forests maintain ecosystem processes after the decline of native tree species. Ecol Monogr 82:221–228. doi: 10.1890/11-1014.1 CrossRefGoogle Scholar
  45. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC.
  46. Moles AT, Flores-Moreno H, Bonser SP, Warton DI, Helm A, Warman L, Eldridge DJ, Jurado E, Hemmings FA, Reich PB (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116–127. doi: 10.1111/j.1365-2745.2011.01915.x CrossRefGoogle Scholar
  47. Nuñez MA, Pauchard A (2010) Biological invasions in developing and developed countries: does one model fit all? Biol Invasions 12:707–714. doi: 10.1007/s10530-009-9517-1 CrossRefGoogle Scholar
  48. Nuñez MA, Simberloff D (2005) Invasive species and the cultural keystone species concept. Ecol Soc 10(1):r4.
  49. Paruelo JM (2012) Ecosystem services and tree plantations in Uruguay: a reply to Vihervaara et al. (2012). For Pol Econ 22:85–88. doi: 10.1016/j.forpol.2012.04.005 CrossRefGoogle Scholar
  50. Peltzer DA, Allen RB, Lovett GM, Whitehead D, Wardle DA (2010) Effects of biological invasions on forest carbon sequestration. Glob Chang Biol 16:732–746. doi: 10.1111/j.1365-2486.2009.02038.x CrossRefGoogle Scholar
  51. Pérez ME, Jesús ISD, Lugo AE, Abelleira Martínez OJ (2012) Bryophyte species diversity in secondary forests dominated by the introduced species Spathodea campanulata Beauv. in Puerto Rico. Biotropica 44:763–770. doi: 10.1111/j.1744-7429.2012.00879.x CrossRefGoogle Scholar
  52. Petchey OL, Eklof A, Borrvall C, Ebenman B (2008) Trophically unique species are vulnerable to cascading extinction. Am Nat 171:568–579. doi: 10.1086/587068 PubMedCrossRefGoogle Scholar
  53. Pooley S (2009) Jan van Riebeeck as pioneering explorer and conservator of natural resources at the Cape of Good Hope (1652–62). Environ Hist 15:3–33. doi: 10.3197/096734009X404644 CrossRefGoogle Scholar
  54. Préfecture de la Région Aquitaine (2010) Liste des espèces et des matériels forestiers de reproduction éligibles aux aides de l’état. DRAAF Aquitaine- Bordeaux, 6 ppGoogle Scholar
  55. Procheş Ş, Wilson JRU, Richardson DM, Rejmánek M (2011) Native and naturalized range size in Pinus: relative importance of biogeography, introduction effort and species traits. Glob Ecol Biogeogr 21:513–523. doi: 10.1111/j.1466-8238.2011.00703.x CrossRefGoogle Scholar
  56. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55. doi: 10.1146/annurev-environ-033009-095548 CrossRefGoogle Scholar
  57. Rejmánek M, Richardson DM (2011) Eucalypts. In: Rejmánek M, Simberloff D (eds) Encyclopedia of biological invasions. California University Press, Berkeley, pp 203–209Google Scholar
  58. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809. doi: 10.1111/j.1472-4642.2011.00782 CrossRefGoogle Scholar
  59. Richardson DM, Bond WJ, Dean WRJ, Higgins SI, Midgley GF, Milton SJ, Powrie L, Rutherford MC, Samways MJ, Schulze RE (2000) Invasive alien species and global change: a South African perspective. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, pp 303–349.
  60. Richardson DM, van Wilgen BW, Nunez M (2008) Alien conifer invasions in South America—short fuse burning? Biol Invasions 10:573–577. doi: 10.1007/s10530-007-9140-y CrossRefGoogle Scholar
  61. Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan EJ, Camacho A, Root TL, Sala OE, Schneider S, Ashe D, Camacho A, Clark JR, Early R, Etterson J, Fielder D, Gill J, Minteer B, Polasky S, Safford H, Thompson A, Vellend M (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci USA 106:9721–9724. doi: 10.1073/pnas.0902327106 PubMedCrossRefGoogle Scholar
  62. Rodewald AD, Shustack DP, Hitchcock LE (2010) Exotic shrubs as ephemeral ecological traps for nesting birds. Biol Invasions 12:33–39. doi: 10.1007/s10530-009-9426-3 CrossRefGoogle Scholar
  63. Rodríguez JP, Beard TD Jr, Bennett EM, Cumming GS, Cork SJ, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time and ecosystem services. Ecol Soc 11:28 [online]. Google Scholar
  64. Ross LM (1997) The Chicago wilderness and its critics. A coalition for urban conservation. Restor Manage Notes 15:17–37Google Scholar
  65. Rutherfurd I (2010) When not to remove willows from streams. In: Proceedings of 2nd National Willows Research Forum, 22–23 July, 2010, Beechworth, Victoria, pp 28–29.
  66. Ruwanza S, Gaertner M, Esler KJ, Richardson DM (2013) Both complete clearing and thinning of invasive trees lead to short-term recovery of native riparian vegetation in the Western Cape, South Africa. Appl Veg Sci 16:193–204. doi: 10.1111/j.1654-109X.2012.01222.x CrossRefGoogle Scholar
  67. Saavedra S, Reed-Tsochas F, Uzzi B (2008) Asymmetric disassembly and robustness in declining networks. Proc Natl Acad Sci USA 105:16466–16471. doi: 10.1073/pnas.0804740105 PubMedCrossRefGoogle Scholar
  68. Safford RJ (1997) Nesting success of the Mauritius Fody Foudia rubra in relation to its use of exotic trees as nest sites. Ibis 139:555–559. doi: 10.1111/j.1474-919X.1997.tb08861.x CrossRefGoogle Scholar
  69. Sakio H (2009) Ecology of Robinia pseudoacacia: the history, use, ecology, and management of an introduced tree. Bun-ichi Sougou Shuppan (in Japanese)Google Scholar
  70. Sanon S, Hein T, Douven W, Winkler P (2012) Quantifying ecosystem service trade-offs: the case of an urban floodplain in Vienna, Austria. J Enviton Manage 111:159–172. doi: 10.1016/j.jenvman.2012.06.008 CrossRefGoogle Scholar
  71. Schlaepfer MA, Sax DF, Olden JD (2011) The potential conservation value of non-native species. Conserv Biol 25:428–437. doi: 10.1111/j.1523-1739.2010.01646.x PubMedCrossRefGoogle Scholar
  72. Schmidt KA, Whelan CJ (1999) Effects of exotic Lonicera and Rhamnus on songbird nest predation. Conserv Biol 13:1502–1506CrossRefGoogle Scholar
  73. Seuss D (1972) The Lorax. Random House, New YorkGoogle Scholar
  74. Shapiro AM (2002) The Californian urban butterfly fauna is dependent on alien plants. Divers Distrib 8:31–40. doi: 10.1046/j.1366-9516.2001.00120.x CrossRefGoogle Scholar
  75. Sher A, Quigley MF (2013) Tamarix—a case study of ecological change in the American West. Oxford University Press, New YorkGoogle Scholar
  76. Sherley GH, Hayes LM (1993) The conservation of a giant weta (Deinacrida n. sp. Orthoptera: Stenopelmatidae) at Mahoenui, King Country: habitat use, and other aspects of its ecology. NZ Entomol 16:55–68. doi: 10.1080/00779962.1993.9722652 CrossRefGoogle Scholar
  77. Silverstein S (1964) The giving tree. Harper and Row, New YorkGoogle Scholar
  78. Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, van Wilgen BW, Zalba SM, Zenni RD, Bustamante R, Peña E, Ziller SR (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504CrossRefGoogle Scholar
  79. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilá M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. doi: 10.1016/j.tree.2012.07.013 PubMedCrossRefGoogle Scholar
  80. Singer SR (2011) Hawaii’s watershed moment: killing trees to save water. Hawai’i Free Press, Hawai’i, USAGoogle Scholar
  81. Smith GEP (1941) Creosoted tamarisk fence posts and adaptability of tamarisk as a fine cabinet wood. Technical Bulletin, University of Arizona Agricultural Experiment Station 92Google Scholar
  82. Stubbings JA (1977) A case against controlling introduced acacias. In: Proceedings of 2nd National Weeds Conference South Africa, pp 89–107Google Scholar
  83. Sward S (2012) San Francisco’s plan to cut non-native trees sparks environmental clash. The Modesto Bee 18 Jan 2012Google Scholar
  84. Tassin J, Rangan H, Kull CA (2012) Hybrid improved tree fallows: harnessing invasive woody legumes for agroforestry. Agrofor Syst 84:417–428. doi: 10.1007/s10457-012-9493-9 CrossRefGoogle Scholar
  85. Thaman RR, Elevitch CR, Wilkinson KM (2000) Multipurpose trees for agroforestry in the Pacific Islands. Permanent Agricultural Resources, Holualoa, HI. Accessed 26 Nov 2012
  86. van Wilgen BW (2012) Evidence, perceptions, and trade-offs associated with invasive alien plant control in the Table Mountain National Park, South Africa. Ecol Soc 17:23Google Scholar
  87. van Wilgen BW, Richardson DM (2013) Challenges and trade-offs in the management of invasive alien trees. Biol Invasions. doi: 10.1007/s10530-013-0615-8
  88. van Wilgen BW, Cowling RM, Burgers CJ (1996) Valuation of ecosystem services. Bioscience 46:184–189. doi: 10.2307/1312739 CrossRefGoogle Scholar
  89. van Wilgen BW, Reyers B, Le Maitre DC, Richardson DM, Schonegevel L (2008) A biome-scale assessment of the impact of invasive alien plants on ecosystem services in South Africa. J Environ Manage 89:336–349. doi: 10.1016/j.jenvman.2007.06.015 PubMedCrossRefGoogle Scholar
  90. van Wilgen BW, Dyer C, Hoffmann JH, Ivey P, Le Maitre DC, Moore JL, Richardson DM, Rouget M, Wannenburgh A, Wilson JRU (2011) National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Divers Distrib 17:1060–1075. doi: 10.1111/j.1472-4642.2011.00785.x CrossRefGoogle Scholar
  91. Vihervaara P, Marjokorpi A, Kumpula T, Walls M, Kamppinen M (2012) Ecosystem services of fast-growing tree plantations: a case study on integrating social valuations with land-use changes in Uruguay. For Policy Econ 14:58–68CrossRefGoogle Scholar
  92. Vitule JRS, Freire CA, Vazquez DP, Nuñez MA, Simberloff D (2012) Revisiting the potential conservation value of non-native species. Conserv Biol 26:1153–1155. doi: 10.1111/j.1523-1739.2012.01950.x PubMedCrossRefGoogle Scholar
  93. Welz A, Jenkins A (2005) How green is the valley? Monitoring fish eagles along the Breede River. Africa—Birds & Birding Feb/Mar 2005:30–37Google Scholar
  94. Wise RM, van Wilgen BW, Le Maitre DC (2012) Costs, benefits and management options for an invasive alien tree species: the case of mesquite in the Northern Cape, South Africa. J Arid Environ 84:80–90. doi: 10.1016/j.jaridenv.2012.03.001 CrossRefGoogle Scholar
  95. Zavaleta ES, Hobbs RJ, Mooney HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454–459. doi: 10.1016/S0169-5347(01)02194-2 CrossRefGoogle Scholar
  96. Zouhar K (2011) Rhamnus cathartica, R. davurica. In Fire effects information system. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Accessed 15 Nov 2012

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ian A. Dickie
    • 1
    • 10
    Email author
  • Brett M. Bennett
    • 2
    • 3
  • Larry E. Burrows
    • 1
  • Martin A. Nuñez
    • 4
  • Duane A. Peltzer
    • 1
  • Annabel Porté
    • 5
  • David M. Richardson
    • 6
  • Marcel Rejmánek
    • 8
  • Philip W. Rundel
    • 9
  • Brian W. van Wilgen
    • 6
    • 7
  1. 1.Landcare ResearchLincolnNew Zealand
  2. 2.School of Humanities and Communication ArtsUniversity of Western SydneyPenrithAustralia
  3. 3.Department of Historical Studies, Faculty of Humanities, Beattie BuildingUniversity Avenue, Upper Campus, University of Cape TownCape TownSouth Africa
  4. 4.Laboratorio Ecotono, INIBIOMA, CONICETUniversidad Nacional del ComahueSan Carlos de BarilocheArgentina
  5. 5.INRA, UMR BIOGECO, Ecologie et Génomique FonctionnellesUniversité Bordeaux 1Talence CedexFrance
  6. 6.Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
  7. 7.CSIR Natural Resources and the EnvironmentStellenboschSouth Africa
  8. 8.Department of Evolution and EcologyUniversity of California, DavisDavisUSA
  9. 9.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesUSA
  10. 10.Bio-Protection Research CentreLincoln UniversityLincolnNew Zealand

Personalised recommendations