Biological Invasions

, Volume 16, Issue 3, pp 535–551 | Cite as

A standardized set of metrics to assess and monitor tree invasions

  • John R. U. WilsonEmail author
  • Paul Caplat
  • Ian A. Dickie
  • Cang Hui
  • Bruce D. Maxwell
  • Martin A. Nuñez
  • Aníbal Pauchard
  • Marcel Rejmánek
  • David M. Richardson
  • Mark P. Robertson
  • Dian Spear
  • Bruce L. Webber
  • Brian W. van Wilgen
  • Rafael D. Zenni
Original Paper


Scientists, managers, and policy-makers need functional and effective metrics to improve our understanding and management of biological invasions. Such metrics would help to assess progress towards management goals, increase compatibility across administrative borders, and facilitate comparisons between invasions. Here we outline key characteristics of tree invasions (status, abundance, spatial extent, and impact), discuss how each of these characteristics changes with time, and examine potential metrics to describe and monitor them. We recommend quantifying tree invasions using six metrics: (a) current status in the region; (b) potential status; (c) the number of foci requiring management; (d) area of occupancy (AOO) (i.e. compressed canopy area or net infestation); (e) extent of occurrence (EOO) (i.e. range size or gross infestation); and (f) observations of current and potential impact. We discuss how each metric can be parameterised (e.g. we include a practical method for classifying the current stage of invasion for trees following Blackburn’s unified framework for biological invasions); their potential management value (e.g. EOO provides an indication of the area over which management is needed); and how they can be used in concert (e.g. combining AOO and EOO can provide insights into invasion dynamics; and we use potential status and threat together to develop a simple risk analysis tool). Based on these metrics, we propose a standardized template for reporting tree invasions that we hope will facilitate cross-species and inter-regional comparisons. While we feel this represents a valuable step towards standardized reporting, there is an urgent need to develop more consistent metrics for impact and threat, and for many specific purposes additional metrics are still needed (e.g. detectability is required to assess the feasibility of eradication).


Biodiversity assessments Biological invasions Invasive alien species Management Impact Distribution Non-native 



This paper resulted from the workshop “Tree invasions—patterns & processes, challenges & opportunities” held in Bariloche, Argentina in 2012. We thank all participants at the meeting for valuable discussion. Daniel Simberloff and three reviewers provided valuable comments that improved the manuscript. JRUW acknowledges funding from the South African Working for Water Programme of the Department of Environmental Affairs. IAD was supported by Core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment’s Science and Innovation Group. AP is funded by Ministry of Economy, ICM P05-002 and Conicyt, PFB-23. DMR acknowledges support from the National Research Foundation (Grant 85417), the DST-NRF Centre of Excellence (partly though the collaborative project with the Working for Water programme on “Research for Integrated Management of Invasive Alien Species”) and the Oppenheimer Memorial Trust. CH was supported by the CPRR 81825 of the NRF. BDM was supported by NSF- WildFIRE PIRE, OISE 09667472. BLW was supported by the CSIRO Climate Adaptation Flagship. RDZ was supported by CNPq-Brazil and The University of Tennessee.

Supplementary material

10530_2013_605_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 51 kb)
10530_2013_605_MOESM2_ESM.doc (85 kb)
Supplementary material 2 (DOC 85 kb)


  1. Aikio S, Duncan RP, Hulme PE (2010) Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand. J Biogeogr 37:1740–1751CrossRefGoogle Scholar
  2. Aslan CE, Rejmanek M, Klinger R (2012) Combining efficient methods to detect spread of woody invaders in urban-rural matrix landscapes: an exploration using two species of Oleaceae. J Appl Ecol 49:331–338CrossRefGoogle Scholar
  3. Bean AR (2007) A new system for determining which plant species are indigenous in Australia. Aust Syst Bot 20:1–43CrossRefGoogle Scholar
  4. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339PubMedCrossRefGoogle Scholar
  5. Brummer TJ, Maxwell BD, Higgs MD, Rew LJ (2013) Implementing and interpreting local-scale invasive species distribution models. Divers Distrib 19:919–932CrossRefGoogle Scholar
  6. Buckley YM, Brockerhoff E, Langer L, Ledgard N, North H, Rees M (2005) Slowing down a pine invasion despite uncertainty in demography and dispersal. J Appl Ecol 42:1020–1030CrossRefGoogle Scholar
  7. Caplat P, Cheptou P-O, Diez J, Guisan A, Larson B, MacDougall A, Peltzer D, Richardson DM, Shea K, van Kleunen M, Zhang R, Buckley YM (2013) Movement, impacts and management of plant distributions in response to climate change: insights from invasions. Oikos 122:1265–1274CrossRefGoogle Scholar
  8. Caplat P, Coutts S, Buckley YM (2012a) Modeling population dynamics, landscape structure, and management decisions for controlling the spread of invasive plants. In: Ostfeld RS, Schlesinger WH (eds) Year in Ecology and Conservation Biology, Annals of the New York Academy of Sciences, pp 72–83. doi: 10.1111/j.1749-6632.2011.06313.x
  9. Caplat P, Nathan R, Buckley YM (2012b) Seed terminal velocity, wind turbulence, and demography drive the spread of an invasive tree in an analytical model. Ecology 93:368–377PubMedGoogle Scholar
  10. Caplat P, Hui C, Maxwell B, Peltzer D (2014) Cross-scale management strategies for optimal control of trees invading from source plantations. Biol Invasions 16. doi: 10.1007/s10530-013-0608-7
  11. Caswell H (2001) Matrix population models: construction, analysis and interpretation. Sinauer Associates Inc., SunderlandGoogle Scholar
  12. Dehnen-Schmutz K (2011) Determining non-invasiveness in ornamental plants to build green lists. J Appl Ecol 48:1374–1380CrossRefGoogle Scholar
  13. Diez JM, Hulme PE, Duncan RP (2012) Using prior information to build probabilistic invasive species risk assessments. Biol Invasions 14:681–691CrossRefGoogle Scholar
  14. Donaldson JS, Richardson DM and Wilson JRU (2014) Scale-area curves identify artefacts of human use in the spatial structure of an invasive tree. Biol Invasions 16. doi: 10.1007/s10530-013-0602-0
  15. Francis JK, Liogier HA (1991) Naturalized exotic tree species in Puerto Rico. USDA Forest Service General Technical Report SO-82Google Scholar
  16. Fuentes N, Pauchard A, Sanchez P, Esquivel J, Marticorena A (2013) A new comprehensive database of alien plant species in Chile based on herbarium records. Biol Invasions 15:847–858CrossRefGoogle Scholar
  17. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford, p 266Google Scholar
  18. Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9CrossRefGoogle Scholar
  19. Gordon DR, Mitterdorfer B, Pheloung PC, Ansari S, Buddenhagen C, Chimera C, Daehler CC, Dawson W, Denslow JS, LaRosa A, Nishidal T, Onderdonk DA, Panetta FD, Pyšek P, Randall RP, Richardson DM, Tshidada NJ, Virtue JG, Williams PA (2010) Guidance for addressing the Australian Weed Risk Assessment questions. Plant Prot Q 25:56–74Google Scholar
  20. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MP, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecology Letters 16:1424–1435Google Scholar
  21. Gundale MJ, Pauchard A, Langdon B, Peltzer DA, Maxwell BD, Nuñez MA (2014) Can model species be used to advance the field of invasion ecology? Biol Invasions 16. doi: 10.1007/s10530-013-0610-0
  22. Guo Q (2011) Counting “exotics”. Neobiota 9:71–73CrossRefGoogle Scholar
  23. Gurevitch J, Fox GA, Wardle GM, Inderjit, Taub D (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecology Letters 14(4): 407–418Google Scholar
  24. Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10:1833–1848CrossRefGoogle Scholar
  25. Horvitz CC (2011) Demography. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley and Los Angeles, pp 147–150Google Scholar
  26. Hui C, McGeoch MA, Reyers B, le Roux PC, Greve M, Chown SL (2009) Extrapolating population size from the occupancy-abundance relationship and the scaling pattern of occupancy. Ecol Appl 19:2038–2048PubMedCrossRefGoogle Scholar
  27. Hui C, Richardson DM, Robertson MP, Wilson JRU, Yates CY (2011) Macroecology meets invasion ecology: linking native distribution of Australian acacias to invasiveness. Divers Distrib 17:872–883CrossRefGoogle Scholar
  28. Hui C, Richardson DM, Visser V and Wilson JRU (2014) Macroecology meets invasion ecology: performance of Australian acacias and eucalypts around the world foretold by features of their native ranges. Biol Invasions 16. doi: 10.1007/s10530-013-0599-4
  29. Hulme PE (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193CrossRefGoogle Scholar
  30. Hulme PE (2012) Weed risk assessment: a way forward or a waste of time? J Appl Ecol 49:10–19CrossRefGoogle Scholar
  31. Ibáñez I, Diez JM, Miller LP, Olden JD, Sorte CJB, Blumenthal DM, Bradley BA, D’Antonio CM, Dukes JS, Early RI, Grosholz ED, Lawler JJ (in press) Integrated assessment of biological invasions. Ecological Appl. doi: 10.1890/13-0776.1
  32. IUCN (2012) IUCN red list categories and criteria version 3.1. Gland, SwitzerlandGoogle Scholar
  33. Jackson CH (2011) Multi-state models for panel data: the msm package for R. J Stat Softw 38:1–28Google Scholar
  34. Kaplan H, van Niekerk A, Le Roux JJ, Richardson DM, Wilson JRU (2014) Incorporating risk mapping at multiple spatial scales into eradication management plans. Biol Invasions 16. doi: 10.1007/s10530-013-0611-z
  35. Koop AL, Horvitz CC (2005) Projection matrix analysis of the demography of an invasive, nonnative shrub (Ardisia elliptica). Ecology 86:2661–2672CrossRefGoogle Scholar
  36. Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman MA, Dehnen-Schmutz K, Essl F, Hulme PE, Richardson DM, Sol D, Vilà M (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493PubMedCrossRefGoogle Scholar
  37. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien apecies a selection from the Global Invasive Species Database. Invasive Species Specialist Group (ISSG), World Conservation Union (IUCN), 12 ppGoogle Scholar
  38. Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akcakaya HR, Leader-Williams N, Milner-Gulland EJ, Stuart SN (2008) Quantification of extinction risk: IUCN’s System for classifying threatened species. Conserv Biol 22:1424–1442PubMedCrossRefGoogle Scholar
  39. Mackenzie DI, Royle JA (2005) Designing occupancy studies: general advice and allocating survey effort. J Appl Ecol 42:1105–1114CrossRefGoogle Scholar
  40. Marco DE, Paez SA (2000) Invasion of Gleditsia triacanthos in Lithraea ternifolia Montane forests of central Argentina. Environ Manage 26:409–419PubMedCrossRefGoogle Scholar
  41. Martin N, Paynter Q (2010) Assessing the biosecurity risk from pathogens and herbivores to indigenous plants: lessons from weed biological control. Biol Invasions 12:3237–3248CrossRefGoogle Scholar
  42. McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffmann M (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers Distrib 16:95–108CrossRefGoogle Scholar
  43. McGeoch MA, Spear D, Kleynhans EJ, Marais E (2012) Uncertainty in invasive alien species listing. Ecol Appl 22:959–971PubMedCrossRefGoogle Scholar
  44. McNaught I, Thackway R, Brown L, Parsons M (2006) A field manual for surveying and mapping nationally significant weeds. Bureau of Rural Sciences, CanberraGoogle Scholar
  45. Münzbergová Z, Hadincová V, Wild J and Kindlmannová J (2013) Variability in the contribution of different life stages to population growth as a key factor in the invasion success of Pinus strobus. PLoS ONE 8Google Scholar
  46. Nuñez MA, Medley KA (2011) Pine invasions: climate predicts invasion success; something else predicts failure. Divers Distrib 17:703–713CrossRefGoogle Scholar
  47. Nuñez MA, Pauchard A (2010) Biological invasions in developing and developed countries: does one model fit all? Biol Invasions 12:707–714CrossRefGoogle Scholar
  48. Panetta FD, Csurhes S, Markula A, Hannan-Jones M (2011) Predicting the cost of eradication for 41 Class 1 declared weeds in Queensland. Plant Prot Q 26:42–46Google Scholar
  49. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Holle BV, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19CrossRefGoogle Scholar
  50. Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413CrossRefGoogle Scholar
  51. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Hoft R, Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science 339:277–278PubMedCrossRefGoogle Scholar
  52. Petit RJ (2004) Biological invasions at the gene level. Divers Distrib 10:159–165CrossRefGoogle Scholar
  53. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annual review of ecology evolution and systematics, p 187–214Google Scholar
  54. Piazza A (2010) About optimal harvesting policies for a multiple species forest without discounting. J Econ 100:217–233CrossRefGoogle Scholar
  55. Pichancourt JB, Chades I, Firn J, van Klinken RD, Martin TG (2012) Simple rules to contain an invasive species with a complex life cycle and high dispersal capacity. J Appl Ecol 49:52–62CrossRefGoogle Scholar
  56. Pieterse PJ, Cairns ALP (1988) Factors affecting the reproductive success of Acacia longifolia (Andr) Willd. in the Banhoek Valley, South-western Cape, Republic of South Africa. South African J Botany 54:461–464Google Scholar
  57. Potts BM, Barbour RC, Hingston AB, Vaillancourt RE (2003) Genetic pollution of native eucalypt gene pools—identifying the risks. Aust J Bot 51:1–25CrossRefGoogle Scholar
  58. Pyšek P, Danihelka J, Sádlo J, Chrtek J, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255Google Scholar
  59. Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244PubMedCrossRefGoogle Scholar
  60. Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143CrossRefGoogle Scholar
  61. Rabinowitz D (1981) Seven forms of rarity. In: Synge H (ed) Aspects of rare plant conservation. Wiley, Chichester, pp 205–217Google Scholar
  62. Randall RP (2007) The introduced flora of Australia and its weed status. CRC for Australian Weed Management, AdelaideGoogle Scholar
  63. Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203CrossRefGoogle Scholar
  64. Rejmánek M (2011) Invasiveness. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley and Los Angeles, pp 379–385Google Scholar
  65. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094CrossRefGoogle Scholar
  66. Rejmánek M, Richardson DM, Pyšek P (2013) Chapter 13: Plant invasions and invasibility of plant communities. In: van der Maarel E, Franklin J (eds) Vegetation ecology, vol 2. Wiley, New york, pp 387–424CrossRefGoogle Scholar
  67. Rew LJ, Lehnhoff EA, Maxwell BD (2007) Non-indigenous species management using a population prioritization framework. Can J Plant Sci 87:1029–1036CrossRefGoogle Scholar
  68. Rew LJ, Maxwell BD, Dougher FL, Aspinall R (2006) Searching for a needle in a haystack: evaluating survey methods for non-indigenous plant species. Biol Invasions 8:523–539CrossRefGoogle Scholar
  69. Richardson DM, Brown PJ (1986) Invasion of mesic mountain fynbos by Pinus radiata. South African J Bot 52:529–536Google Scholar
  70. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107CrossRefGoogle Scholar
  71. Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331CrossRefGoogle Scholar
  72. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809CrossRefGoogle Scholar
  73. Robertson MP, Cumming GS, Erasmus BFN (2010) Getting the most out of atlas data. Divers Distrib 16:363–375CrossRefGoogle Scholar
  74. Rundel PW, Dickie IE and Richardson DM (2014) Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invasions 16. doi: 10.1007/s10530-013-0614-9
  75. Sebert-Cuvillier E, Paccaut F, Chabrerie O, Endels P, Goubet O, Decocq G (2007) Local population dynamics of an invasive tree species with a complex life-history cycle: a stochastic matrix model. Ecol Model 201:127–143CrossRefGoogle Scholar
  76. Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biol Invasions 13:1255–1268CrossRefGoogle Scholar
  77. Simberloff D, Gibbons L (2004) Now you see them, now you don’t—population crashes of established introduced species. Biol Invasions 6:161–172CrossRefGoogle Scholar
  78. Smolik MG, Dullinger S, Essl F, Kleinbauer I, Leitner M, Peterseil J, Stadler LM, Vogl G (2010) Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant. J Biogeogr 37:411–422CrossRefGoogle Scholar
  79. Stohlgren TJ, Pyšek P, Kartesz J, Nishino M, Pauchard A, Winter M, Pino J, Richardson DM, Wilson JRU, Murray BR, Phillips ML, Ming-yang L, Celesti-Grapow L, Font X (2011) Widespread plant species: natives versus aliens in our changing world. Biol Invasions 13:1931–1944CrossRefGoogle Scholar
  80. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250CrossRefGoogle Scholar
  81. United Nations Environment Programme (2010) COP 10 Decision X/2. strategic plan for biodiversity 2011–2020 and the aichi biodiversity targets. Conference of the Parties to the Convention on Biological Diversity. Tenth meeting, Nagoya, 18–29 Oct 2010.
  82. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245PubMedCrossRefGoogle Scholar
  83. van Wilgen BW, Dyer C, Hoffmann JH, Ivey P, Le Maitre DC, Moore JL, Richardson DM, Rouget M, Wannenburgh A, Wilson JRU (2011) National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Divers Distrib 17:1060–1075CrossRefGoogle Scholar
  84. van Wilgen BW and Richardson DM (2014) Managing invasive alien trees: challenges and trade-offs. Biol Invasions 16. doi: 10.1007/s10530-013-0615-8
  85. Vanden-Broeck A, Cox K, Michiels B, Verschelde P, Villar M (2012) With a little help from my friends: hybrid fertility of exotic Populus x canadensis enhanced by related native Populus nigra. Biol Invasions 14:1683–1696CrossRefGoogle Scholar
  86. Veldtman R, Chown SL, McGeoch MA (2010) Using scale-area curves to quantify the distribution, abundance and range expansion potential of an invasive species. Divers Distrib 16:159–169CrossRefGoogle Scholar
  87. Visser V, Langdon B, Pauchard A, Richardson DM (2014) Unlocking the potential of Google Earth as a tool in invasion science. Biol Invasions 16. doi: 10.1007/s10530-013-0604-y
  88. Widrlechner MP, Thompson JR, Iles JKD, Dixon PM (2004) Models for predicting the risk of naturalization of non-native woody plants in Iowa. Journal of Environmental Horticulture 22:23–31Google Scholar
  89. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482CrossRefGoogle Scholar
  90. Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170CrossRefGoogle Scholar
  91. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144PubMedCrossRefGoogle Scholar
  92. Wilson JRU, Gairifo C, Gibson MR, Arianoutsou M, Bakar BB, Baret S, Celesti-Grapow L, DiTomaso JM, Dufour-Dror JM, Kueffer C, Kull CA, Hoffmann JH, Impson FAC, Loope LL, Marchante E, Marchante H, Moore JL, Murphy D, Tassin J, Witt A, Zenni RD, Richardson DM (2011) Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Divers Distrib 17:1030–1046CrossRefGoogle Scholar
  93. Wilson JRU, Richardson DM, Rouget M, Procheş Ş, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22CrossRefGoogle Scholar
  94. Wilson RJ, Thomas CD, Fox R, Roy DB, Kunin WE (2004) Spatial patterns in species distributions reveal biodiversity change. Nature 432:393–396PubMedCrossRefGoogle Scholar
  95. Worm B, Hilborn R, Baum J, Branch T, Collie J, Costello C, Fogarty M, Fulton E, Hutchings J, Jennings S, Jensen O, Lotze H, Mace P, McClanahan T, Minto C, Palumbi S, Parma A, Ricard D, Rosenberg A, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325:578–585PubMedCrossRefGoogle Scholar
  96. Zenni RD (in press) Analysis of introduction history of invasive plants in Brazil reveals patterns of association between biogeographical origin and reason for introduction. Austral Ecol:  10.1111/aec.12097
  97. Zenni RD, J.-B. L, Lamarque LJ, Porté A (2014) Adaptive evolution, phenotypic plasticity and genotype-environment interactions in trees: implications for invasion biology. Biol Invasions 16. doi: 10.1007/s10530-013-0607-8
  98. Zenni RD, Nuñez MA (2013) The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:801–815CrossRefGoogle Scholar
  99. Zenni RD, Wilson JRU, Le Roux JJ, Richardson DM (2009) Evaluating the invasiveness of Acacia paradoxa in South Africa. South African J Botany 75:485–496CrossRefGoogle Scholar
  100. Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Brazilian J Botany 34:431–446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • John R. U. Wilson
    • 1
    • 2
    Email author
  • Paul Caplat
    • 3
  • Ian A. Dickie
    • 4
    • 5
  • Cang Hui
    • 2
  • Bruce D. Maxwell
    • 6
  • Martin A. Nuñez
    • 7
  • Aníbal Pauchard
    • 8
  • Marcel Rejmánek
    • 9
  • David M. Richardson
    • 2
  • Mark P. Robertson
    • 10
  • Dian Spear
    • 1
    • 2
  • Bruce L. Webber
    • 11
    • 12
  • Brian W. van Wilgen
    • 2
    • 13
  • Rafael D. Zenni
    • 14
  1. 1.Invasive Species Programme, South African National Biodiversity InstituteKirstenbosch National Research CentreClaremontSouth Africa
  2. 2.Department of Botany and Zoology, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
  3. 3.Department of Physical Geography and Ecosystem SciencesUniversity of LundLundSweden
  4. 4.Landcare ResearchLincolnNew Zealand
  5. 5.Bio-Protection Research CentreLincoln UniversityLincolnNew Zealand
  6. 6.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  7. 7.Laboratorio Ecotono, INIBIOMA, CONICETUniv. Nacional del ComahueSan Carlos de BarilocheArgentina
  8. 8.Facultad de Ciencias Forestales, Institute of Ecology and Biodiversity (IEB)Universidad de ConcepciónConcepciónChile
  9. 9.Department of Evolution and EcologyUniversity of California, DavisDavisUSA
  10. 10.Department of Zoology and Entomology, Centre for Invasion BiologyUniversity of PretoriaPretoriaSouth Africa
  11. 11.CSIRO Ecosystem SciencesP.O. WembleyAustralia
  12. 12.School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  13. 13.CSIR, Natural Resources and the EnvironmentStellenboschSouth Africa
  14. 14.Department of Ecology and Evolutionary BiologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations