Biological Invasions

, Volume 16, Issue 5, pp 1105–1118 | Cite as

Removal of livestock alters native plant and invasive mammal communities in a dry grassland–shrubland ecosystem

  • Amy L. Whitehead
  • Andrea E. ByromEmail author
  • Richard I. Clayton
  • Roger P. Pech
Original Paper


The impacts of domesticated herbivores on ecosystems that did not evolve with mammalian grazing can profoundly influence community composition and trophic interactions. Also, such impacts can occur over long time frames by altering successional vegetation trajectories. Removal of domesticated herbivores to protect native biota can therefore lead to unexpected consequences at multiple trophic levels for native and non-native species. In the eastern South Island of New Zealand large areas of seral grassland–shrubland have had livestock (sheep and cattle) removed following changes in land tenure. The long-term (>10 years) outcomes for these communities are complex and difficult to predict: land may return to a native-dominated woody plant community or be invaded by exotic plants and mammals. We quantified direct and indirect effects of livestock removal on this ecosystem by comparing plant and invasive mammal communities at sites where grazing by livestock ceased c.10–35 years ago (conservation sites) with paired sites where pastoralism has continued to the present (pastoral sites). There was higher total native plant richness and reduced richness of exotic plants on conservation sites compared with pastoral sites. Further, there were differences in the use of conservation and pastoral sites by invasive mammals: rabbits and hedgehogs favoured sites grazed by livestock whereas house mice, brushtail possums and hares favoured conservation sites. Changes in the relative abundance of invasive mammal species after removal of domesticated livestock may compromise positive outcomes for conservation in successional plant communities with no evolutionary history of mammalian grazing.


Biotic invasions Exotic plant Invasive mammal Livestock removal Native plant richness Pastoralism 



C Jensen, R Carran, E Hayman, V Harrison and G Pech assisted with collection of field data. N Thornley from the New Zealand Department of Conservation (DOC) provided maps showing boundaries of properties transferred to the conservation estate. C Thomson and J Whitford helped with site selection. R Duncan helped with data analysis and interpretation. Access to sites was provided by H Inch, B and J Kirk, G Burrows and DOC. This work was greatly improved by discussions with S Walker, S Timmins, C Krebs, ARE Sinclair, A Kenney, and J Reardon. A Mark provided insightful comments on an earlier draft of the manuscript. This work was funded by the New Zealand Ministry of Building, Innovation and Employment’s Science and Innovation Group, through core funding to Crown Research Institutes and funding for contracted projects C09X0505 and C09X0909.

Supplementary material

10530_2013_565_MOESM1_ESM.docx (100 kb)
Supplementary material 1 (DOCX 100 kb)


  1. Allcock KG, Hik DS (2004) Survival, growth, and escape from herbivory are determined by habitat and herbivore species for three Australian woodland plants. Oecologia 138:231–241. doi: 10.1007/s00442-003-1420-3 PubMedCrossRefGoogle Scholar
  2. Amiaud B, Touzard B, Bonis A et al (2008) After grazing exclusion, is there any modification of strategy for two guerrilla species: Elymus repens (L.) Gould and Agrostis stolonifera (L.)? Plant Ecol 197:107–117. doi: 10.1007/s11258-007-9364-z CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1046/j.1442-9993.2001.01070.x Google Scholar
  4. Angel A, Wanless RM, Cooper J (2008) Review of impacts of the introduced house mouse on islands in the Southern Ocean: are mice equivalent to rats? Biol Invasions 11:1743–1754. doi: 10.1007/s10530-008-9401-4 CrossRefGoogle Scholar
  5. Arthur A, Pech R, Dickman C (2004) Habitat structure mediates the non lethal effects of predation on enclosed populations of house mice. J Anim Ecol 73:867–877. doi: 10.1111/j.0021-8790.2004.00864.x CrossRefGoogle Scholar
  6. Bakker ES, Ritchie ME, Olff H et al (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788. doi: 10.1111/j.1461-0248.2006.00925.x PubMedCrossRefGoogle Scholar
  7. Bellingham PJ (1998) Shrub succession and invasibility in a New Zealand montane grassland. Aust J Ecol 23:562–573. doi: 10.1111/j.1442-9993.1998.tb00766.x CrossRefGoogle Scholar
  8. Cingolani A, Noy-Meir I, Diaz S (2005) Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol Appl 15:757–773. doi: 10.1890/03-5272 CrossRefGoogle Scholar
  9. Coomes DA, Allen RB, Scott NA et al (2002) Designing systems to monitor carbon stocks in forests and shrublands. For Ecol Manage 164:89–108. doi: 10.1016/S0378-1127(01)00592-8 CrossRefGoogle Scholar
  10. Courchamp F, Caut S (2006) Use of biological invasions and their control to study the dynamics of interacting populations. In: Cadotte M, McMahon S, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Invasion ecology 1. Springer, Berlin, pp 243–269CrossRefGoogle Scholar
  11. Cowan PE (2005) Brushtail possum. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 56–80Google Scholar
  12. Day NJ, Buckley HL (2013) Twenty-five years of plant community dynamics and invasion in New Zealand tussock grasslands. Austral Ecol. doi: 10.1111/aec.12016
  13. Denyer JL, Hartley SE, John EA (2010) Both bottom-up and top-down processes contribute to plant diversity maintenance in an edaphically heterogeneous ecosystem. J Ecol 98:498–508. doi: 10.1111/j.1365-2745.2009.01633.x CrossRefGoogle Scholar
  14. Diaz S, Lavorel S, McIntyre S et al (2007) Plant trait responses to grazing—a global synthesis. Glob Chang Biol 13:313–341. doi: 10.1111/j.1365-2486.2006.01288.x CrossRefGoogle Scholar
  15. Diez JM, Buckley HL, Case BS et al (2009) Interacting effects of management and environmental variability at multiple scales on invasive species distributions. J Appl Ecol 46:1210–1218. doi: 10.1111/j.1365-2664.2009.01725.x Google Scholar
  16. Dodd M, Barker G, Burns B et al (2011) Resilience of New Zealand indigenous forest fragments to impacts of livestock and pest mammals. N Z J Ecol 35:83–95Google Scholar
  17. Dungan RJ, O’Cain MJ, Lopez ML et al (2002) Contribution by possums to seed rain and subsequent seed germination in successional vegetation, Canterbury, New Zealand. N Z J Ecol 26:121–128Google Scholar
  18. Elmhagen B, Rushton SP (2007) Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecol Lett 10:197–206. doi: 10.1111/j.1461-0248.2006.01010.x PubMedCrossRefGoogle Scholar
  19. Fabian Y, Sandau N, Bruggisser OT et al (2012) Diversity protects plant communities against generalist molluscan herbivores. Ecol Evol 2:2460–2473. doi: 10.1002/ece3.359 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fensham R, Silcock J, Dwyer J (2011) Plant species richness responses to grazing protection and degradation history in a low productivity landscape. J Veg Sci 22:997–1008. doi: 10.1111/j.1654-1103.2011.01305.x CrossRefGoogle Scholar
  21. Firn J, House APN, Buckley YM (2010) Alternative states models provide an effective framework for invasive species control and restoration of native communities. J Appl Ecol 47:96–105. doi: 10.1111/j.1365-2664.2009.01741.x CrossRefGoogle Scholar
  22. Forsyth DM, Wilmshurst JM, Allen RB et al (2010) Impacts of introduced deer and extinct moa on New Zealand ecosystems. N Z J Ecol 34:48–65Google Scholar
  23. Grosholz E (2010) Avoidance by grazers facilitates spread of an invasive hybrid plant. Ecol Lett 13:145–153. doi: 10.1111/j.1461-0248.2009.01409.x PubMedCrossRefGoogle Scholar
  24. Grove PB, Mark AF, Dickinson KJM (2002) Vegetation monitoring of recently protected tussock grasslands in the southern South Island, New Zealand. J R Soc N Z 32:379–414. doi: 10.1080/03014223.2002.9517700 CrossRefGoogle Scholar
  25. Haarmeyer DH, Schmiedel U, Dengler J et al (2010) How does grazing intensity affect different vegetation types in arid Succulent Karoo, South Africa? Implications for conservation management. Biol Conserv 143:588–596. doi: 10.1016/j.biocon.2009.11.008 CrossRefGoogle Scholar
  26. Harris W, Fan J (1996) The role of fertiliser in the invasion of South Island high country by hawkweeds. Proc N Z Grassl Assoc 58:205–210Google Scholar
  27. Hurst JM, Allen RB (2007) The Recce method for describing New Zealand vegetation-field protocols. Manaaki Whenua—Landcare Research, Lincoln, New ZealandGoogle Scholar
  28. Innes J, Hay R, Flux I et al (1999) Successful recovery of North Island kokako Callaeas cinerea wilsoni populations, by adaptive management. Biol Conserv 87:201–214. doi: 10.1016/S0006-3207(98)00053-6 CrossRefGoogle Scholar
  29. Jones C, Sanders MD (2005) European hedgehog. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 81–94Google Scholar
  30. Kenkel NC, Orloci L (1986) Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919–928. doi: 10.2307/1939814 CrossRefGoogle Scholar
  31. Kimball S, Schiffman PM (2003) Differing effects of cattle grazing on native and alien plants. Conserv Biol 17:1681–1693. doi: 10.1111/j.1523-1739.2003.00205.x CrossRefGoogle Scholar
  32. King CM, Edgar RL (1977) Techniques for trapping and tracking stoats (Mustela erminea): a review, and a new system. N Z J Zool 4:193–212. doi: 10.1080/03014223.1977.9517953 CrossRefGoogle Scholar
  33. Kutt AS, Gordon IJ (2012) Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savannas. Anim Conserv 15:416–425. doi: 10.1111/j.1469-1795.2012.00530.x CrossRefGoogle Scholar
  34. Lee W, Wood J, Rogers G (2010) Legacy of avian-dominated plant-herbivore systems in New Zealand. N Z J Ecol 34:28–47Google Scholar
  35. Legge S, Kennedy MS, Lloyd R et al (2011) Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following removal of introduced herbivores. Austral Ecol 36:791–799. doi: 10.1111/j.1442-9993.2010.02218.x CrossRefGoogle Scholar
  36. Lunt I, Eldridge D, Morgan J et al (2007) A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust J Bot 55:401–415. doi: 10.1071/BT06178 CrossRefGoogle Scholar
  37. Mack RN, Simberloff D, Lonsdale WM et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010%5B0689:BICEGC%5D2.0.CO%3B2 CrossRefGoogle Scholar
  38. MacKay AD, Lambert MG (2011) Long-term changes in soil fertility and pasture production under no, low and high phosphorous fertiliser inputs. Proc N Z Grassl Assoc 73:37–42Google Scholar
  39. Mark AF (1969) Ecology of snow tussocks in the mountain grasslands of New Zealand. Vegetatio 18:289–306. doi: 10.1007/BF00332843 CrossRefGoogle Scholar
  40. Mark AF, Dickinson KJM (2003) Temporal responses over 30 years to removal of grazing from a mid-altitude snow tussock grassland reserve, Lammerlaw Ecological Region, New Zealand. N Z J Bot 41:655–667. doi: 10.1080/0028825X.2003.9512876 CrossRefGoogle Scholar
  41. May F, Grimm V, Jeltsch F (2009) Reversed effects of grazing on plant diversity: the role of below-ground competition and size symmetry. Oikos 118:1830–1843. doi: 10.1111/j.1600-0706.2009.17724.x CrossRefGoogle Scholar
  42. McGlone MS, Wilmshurst JM (1999) Dating initial Maori environmental impact in New Zealand. Quat Int 59:5–16. doi: 10.1016/S1040-6182(98)00067-6 CrossRefGoogle Scholar
  43. Meffin R, Miller AL, Hulme PE et al (2010) Experimental introduction of the alien plant Hieracium lepidulum reveals no significant impact on montane plant communities in New Zealand. Divers Distrib 16:804–815. doi: 10.1111/j.1472-4642.2010.00684.x CrossRefGoogle Scholar
  44. Meurk CD, Walker S, Gibson RS et al (2002) Changes in vegetation states in grazed and ungrazed Mackenzie Basin grasslands, New Zealand, 1990–2000. N Z J Ecol 26:95–106Google Scholar
  45. Norbury G, Flux JEC (2005) Brown hare. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 151–158Google Scholar
  46. Norbury G, Reddiex B (2005) European rabbit. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 131–151Google Scholar
  47. Norbury GL, Byrom AE, Pech RP et al (2013) Invasive mammals and habitat modification interact to generate unforeseen outcomes for indigenous fauna. Ecol Appl. 23:1707–1721. doi: 10.1890/12-1958.1 Google Scholar
  48. Norton DA, Espie PR, Murray W et al (2006) Influence of pastoral management on plant biodiversity in a depleted short tussock grassland, Mackenzie Basin. N Z J Ecol 30:335–344Google Scholar
  49. O’Hara R, Kotze J (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122CrossRefGoogle Scholar
  50. Oksanen J, Blanchet FG, Kindt R et al (2010) Vegan: community ecology package. R package version 1.17-1Google Scholar
  51. Partridge T, Allen R, Johnson P et al (1991) Vegetation/environment relationships in lowland and montane vegetation of the Kawarau Gorge, Central Otago, New Zealand. N Z J Bot 29:295–310. doi: 10.1080/0028825X.1991.10416608 CrossRefGoogle Scholar
  52. R Development Core Team (2009) R: a language and environment for statistical computing. Version 2.10.1. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  53. Rogers G, Walker S, Lee B (2005) The role of disturbance in dryland New Zealand: past and present. Science for Conservation 258, Department of Conservation, Wellington, New Zea, pp 1–122Google Scholar
  54. Rose AB, Frampton CM (2007) Rapid short-tussock grassland decline with and without grazing, Marlborough, New Zealand. N Z J Ecol 31:232–244Google Scholar
  55. Rose AB, Platt KH (1992) Snow tussock (Chionochloa) population responses to removal of sheep and European hares, Canterbury, New Zealand. N Z J Bot 30:373–382. doi: 10.1080/0028825X.1992.10412917 CrossRefGoogle Scholar
  56. Rose AB, Platt KH, Frampton CM (1995) Vegetation change over 25 years in a New Zealand short-tussock grassland: effects of sheep grazing and exotic invasions. N Z J Ecol 19:163–174Google Scholar
  57. Rose AB, Suisted PA, Frampton CM (2004) Recovery, invasion, and decline over 37 years in a Marlborough short-tussock grassland, New Zealand. N Z J Bot 42:77–87. doi: 10.1080/0028825X.2004.9512891 CrossRefGoogle Scholar
  58. Sage DJM, Norton DA, Espie PR (2009) Effect of grazing exclusion on the woody weed Rosa rubiginosa in high country short tussock grasslands. N Z J Agric Res 52:123–128. doi: 10.1080/00288230909510496 CrossRefGoogle Scholar
  59. Scherber C, Eisenhauer N, Weisser WW et al (2010a) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556. doi: 10.1038/nature09492 PubMedCrossRefGoogle Scholar
  60. Scherber C, Heimann J, Kohler G et al (2010b) Functional identity versus species richness: herbivory resistance in plant communities. Oecologia 163:707–717. doi: 10.1007/s00442-010-1625-1 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x CrossRefGoogle Scholar
  62. Scott NA, Saggar S, McIntosh PD (2001) Biogeochemical impact of Hieracium invasion in New Zealand’s grazed tussock grasslands: Sustainability implications. Ecol Appl 11:1311–1322. doi: 10.1890/1051-0761%282001%29011%5B1311%3ABIOHII%5D2.0.CO%3B2 Google Scholar
  63. Skaer MJ, Graydon DJ, Cushman JH (2013) Community-level consequences of cattle grazing for an invaded grassland: variable responses of native and exotic vegetation. J Veg Sci 24:332–343. doi: 10.1111/j.1654-1103.2012.01460.x CrossRefGoogle Scholar
  64. Smit R, Bokdam J, den Ouden J et al (2001) Effects of introduction and exclusion of large herbivores on small rodent communities. Plant Ecol 155:119–127CrossRefGoogle Scholar
  65. Souter NJ, Milne T (2009) Grazing exclusion as a conservation measure in a South Australian temperate native grassland. Grassl Sci 55:79–88CrossRefGoogle Scholar
  66. Sweetapple P, Nugent G (2011) Chew-track-cards: a multiple-species small mammal detection device. N Z J Ecol 35:153–162Google Scholar
  67. Tate KR, Scott NA, Saggar S et al (2003) Land-use change alters New Zealand’s terrestrial carbon budget: uncertainties associated with estimates of soil carbon change between 1990–2000. Tellus B 55:364–377. doi: 10.1034/j.1600-0889.2003.01444.x CrossRefGoogle Scholar
  68. Thorsen MJ, Dickinson KJM, Seddon PJ (2009) Seed dispersal systems in the New Zealand flora. Perspect Plant Ecol Evol Syst 11:285–309. doi: 10.1016/j.ppees.2009.06.001 CrossRefGoogle Scholar
  69. Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647. doi: 10.1111/j.0030-1299.2005.13727.x CrossRefGoogle Scholar
  70. Verrier FJ, Kirkpatrick JB (2005) Frequent mowing is better than grazing for the conservation value of lowland tussock grasssland at Pontville, Tasmania. Austral Ecol 30:74–78. doi: 10.1111/j.1442-9993.2004.01425.x CrossRefGoogle Scholar
  71. Virgós E, Cabezas-Díaz S, Malo A et al (2003) Factors shaping European rabbit abundance. Acta Theriol 48:113–122. doi: 10.1007/BF03194271 CrossRefGoogle Scholar
  72. Walker S (2000) Post-pastoral changes in composition and guilds in a semi-arid conservation area, Central Otago, New Zealand. N Z J Ecol 24:123–137Google Scholar
  73. Walker S, Lee WG (2002) Alluvial grasslands of Canterbury and Marlborough, eastern South Island, New Zealand: vegetation patterns and long-term change. J R Soc N Z 32:113–147. doi: 10.1080/03014223.2002.9517686 CrossRefGoogle Scholar
  74. Walker S, Wilson JB, Lee WG (2003) Recovery of short tussock and woody species guilds in ungrazed Festuca novae-zelandiae short tussock grassland with fertiliser or irrigation. N Z J Ecol 27:179–189Google Scholar
  75. Walker S, Wilson JB, Lee WG (2005) Does fluctuating resource availability increase invasibility? Evidence from field experiments in New Zealand short tussock grassland. Biol Invasions 7:195–211. doi: 10.1007/s10530-004-8976-7 CrossRefGoogle Scholar
  76. Walker S, Price R, Stephens RT (2008) An index of risk as a measure of biodiversity conservation achieved through land reform. Conserv Biol 22:48–59. doi: 10.1111/j.1523-1739.2007.00844.x PubMedCrossRefGoogle Scholar
  77. Walker S, Cieraad E, Monks A et al (2009) Long-term dynamics and rehabilitation of woody ecosystems in dryland South Island, New Zealand. In: Hobbs RJ, Suding KN (eds) New models for ecosystem dynamics and restoration. Island Press, Washington, DC, pp 99–111Google Scholar
  78. Warburton B (2005) Bennett’s wallaby. In: King CM (ed) The handbook of New Zealand mammals, 2nd edn. Oxford University Press, Melbourne, pp 39–45Google Scholar
  79. Weigelt A, Schumacher J, Walther T et al (2007) Identifying mechanisms of competition in multi-species communities. J Ecol 95:53–64. doi: 10.1111/j.1365-2745.2006.01198.x CrossRefGoogle Scholar
  80. Williams PA, Karl BJ, Bannister P et al (2000) Small mammals as potential seed dispersers in New Zealand. Austral Ecol 25:523–532. doi: 10.1046/j.1442-9993.2000.01078.x CrossRefGoogle Scholar
  81. Wilson DJ, Lee WG (2010) Primary and secondary resource pulses in an alpine ecosystem: snow tussock grass (Chionochloa spp.) flowering and house mouse (Mus musculus) populations in New Zealand. Wildl Res 37:89–103. doi: 10.1071/WR09118 CrossRefGoogle Scholar
  82. Yeaton RI, Flores JLF (2009) Community structure of a southern Chihuahuan Desert grassland under different grazing pressures. S Afr J Bot 75:510–517. doi: 10.1016/j.sajb.2009.04.004 CrossRefGoogle Scholar
  83. Young LM (2012) Seed dispersal mutualisms and plant regeneration in New Zealand alpine ecosystems. PhD thesis, School of Biological Sciences, University of Canterbury, New Zealand, 182 pGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Amy L. Whitehead
    • 1
  • Andrea E. Byrom
    • 1
    Email author
  • Richard I. Clayton
    • 1
  • Roger P. Pech
    • 1
    • 2
  1. 1.Landcare ResearchLincolnNew Zealand
  2. 2.Joint Graduate School in Biodiversity and Biosecurity, School of Biological SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations